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Abstract

Where ideas are difficult to test directly, does the scientific community rely more
on prestige markers to evaluate them? In this paper, I adopt the cultural evolutionary
concept of “prestige,” translate it into economics through a simple reputation model, and
propose this hypothesis of a prestige-testability tradeoff: scientific fields that are less testable
rely more on prestige markers, manifesting a higher concentration. I present empirical
evidence of this prestige-testability tradeoff in two ways. Firstly, in bibliographic data of
the corpus of scientific research from 1900 to 2015, I find that the concentration of author
prestige markers—citations and h-indexes—is consistently negatively associated with a
straightforward measure of testability—the incidence of the word “test” in the titles—across
nineteen fields and across subfields within each field. Secondly, I use the occurrence of a
paradigm shift toward more testability in the mid-1990s as an event study: the “credibility
revolution” in microeconomics. Though not truly exogenous, this paradigm shift reflects a
testability shock that is suitably uncovered by a staggered event-study design. I find that the
credibility revolution administers a leveling effect on its adopters, based on various citation
metrics and share of papers in top-five journals: authors below-median pre-adoption on
these prestige markers see clear and persistent increases in their prestige markers, while their
above-median peers do not, which I interpret as evidence for the prestige-testability tradeoff.
I argue that this prestige-testability tradeoff framework is an important lens for viewing the
organization of science, an important factor in a number of science policy decisions, and
likely a feature of other social learning environments.
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The beauty of poetry is a matter of such nicety, that a young beginner can scarce
ever be certain that he has attained it. Nothing delights him so much, therefore, as
the favourable judgments of his friends and of the public; and nothing mortifies him
so severely as the contrary... Mathematicians, on the contrary, who may have the
most perfect assurance, both of the truth and of the importance of their discoveries,
are frequently very indifferent about the reception which they may meet with from
the public.
Adam Smith (1759, 123-124)

1 Introduction

Economists have long had an interest in the industry of science as a source of economic growth, an

existence proof of public goods provision, and an interesting case of labor markets, reward structures,

and human capital development (Stephan 1996; Mokyr 2016). But the primary currency in the market

place of ideas is prestige, not dollars, euros, or yen.

As defined in cultural evolutionary theory, prestige is voluntarily awarded status, followers freely

choosing a leader (Henrich and Gil-White 2001). By deferring to and learning from a prestigious role

model, a group can transmit information with high-fidelity; this has been shown to lead to group-level

adaptive advantages in a variety of settings (Henrich et al. 2015; Henrich 2016). I argue that the

industry of science serves as a prototypical example of a domain of social learning organized by prestige

and ripe for study. Firstly, the industry is built around the growth of knowledge: researchers present

ideas, hypotheses, methods, and tools, and other researchers freely choose to award them status.

Secondly, the output of the industry is well recorded in journals and books. Thirdly, the custom of

referencing other research via formal and voluntary citation provides a transparent measure of prestige

and a natural entry point for observational study. Prestige, as the currency of science, buys a researcher

the right to spread their ideas.

Using prestige as an organizing principle in science comes with a number of benefits and costs.

On the one hand, science is built by standing on the shoulders of giants: by copying the path of the

previously successful, a new researcher advances faster to the knowledge frontier where she can spend

her resources building the cumulative stock of knowledge. On the other hand, relying too much on

prestige markers can lead to socially wasteful status games, slowing the expansion of the knowledge

frontier.1 With a premium on novelty and priority, researchers compete for fixed prestige rents and
1Some of these costs are the result of “prestige bias” as studied in the literature on psychology and cultural evolution

(Jiménez and Mesoudi 2019; Egozi and Ram 2024).
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race for discovery (Merton 1957; 1961; Hill and Stein 2025a; 2025b).

But the level of prestige deference in science does not exist in a vacuum. My central argument

is that the testability of the subject of study affects how much the field comes to rely on prestige,

and in turn the organizational structure of the field. I propose the following simple hypothesis: this

relationship is negative. Scientific fields that are less testable rely more on prestige markers and thus

exhibit a higher concentration of prestige markers.

Note that I am making no claims about the desirability of prestige deference in any given case;

I claim it is a function of the kind of knowledge being produced in a given field. Again, prestige

deference comes with both benefits and costs, as Adam Smith (1759, 123) recognizes, presented in the

epigraph above. So to use his example: poetry and mathematics are both valuable fields of knowledge,

but the kinds of knowledge are different and thus the fields differ in their organization and how much

they depend on the opinion of their peers.

Prestige is closely related to the economic concept of reputation, used to describe a consumer’s

assessment of the quality of a seller (Kreps and Wilson 1982; Shapiro 1983; Klein 1997). These terms

differ in that prestige is awarded by one’s peers, while reputation is awarded by the other side of the

market. However, in the case where sellers are also buyers (like researchers in the industry of science)

these two concepts overlap. With this motivation, in Section 2 I take the concept of prestige and

translate it into economics in a simple reputation model, and I also introduce the concept of testability

as a variation in the delay until the quality of a good is revealed. A perfectly testable good is akin to a

search good, while a less testable good is akin to an experience or credence good (Nelson 1970; Darby

and Karni 1973). The punchline of the model is the following: in order to meet the participation

constraint, buyers require less certainty about seller reputation (or prestige markers) if the quality of

the good is revealed earlier in time. Consequently, in markets with longer-lived quality uncertainty, the

threshold level of seller reputation is higher, leaving a higher concentration of reputation (or prestige

markers). By interpreting the model’s parameters in the context of science, this serves as a grounding

for my hypothesis of the prestige-testability tradeoff.

I test my hypothesis with two methods. Firstly, to get a sense of the universe of the industry of

science for the past century, I look at a range of nineteen scientific fields and their subfields (twelve

each) from 1900 to 2015, and I use OLS to elicit the association between the concentration of prestige

markers and testability. More specifically, for each field and subfield in each year, I calculate the

Herfindahl–Hirschman index (HHI) of (a) author citations, (b) paper citations, and (c) author h-index
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(each log-ed for interpret-ability). I then regress these on “testability”, measured simply as the incidence

of the string “ test” (space included) in paper names, normalized to a percentile gradient. I find

the concentration of prestige markers is consistently negativity associated with testability, among the

nineteen fields and among the subfields in each field. See Section 3 for details on the regression analysis.

Secondly, and more narrowly, I ask: does a testability shock in a specific field change the dynamics

of prestige deference? To answer this question, I study the case of a paradigm shift toward more

testability: the “credibility revolution” in microeconomics beginning in the mid-1990s. Specifically, I

use a staggered event study design to assess the effects on 3,284 authors who adopt the new paradigm,

using not-yet-adopters as the comparison group.

As expected for any successful paradigm shift, authors gain prestige post adoption (Kuhn 1962).

But importantly for my question, authors with lower prestige before adoption see bigger effects. That

is, I find that the credibility revolution administers a leveling effect on its adopters, based on five-year

citations, ten-year citations, likelihood of scoring a “hit” paper, and share of papers in top-five journals:

authors below-median pre-adoption on these prestige markers see clear and persistent increases in their

prestige markers, while their above-median peers do not. While not truly exogenous, the event study

design aptly reveals the dynamics of a paradigm shift as a shock to the scientific field.2 Indeed I

hesitate to claim strong causal status of any of my estimates but rather focus on the heterogeneity

among the observed effects.3

Related Literature. Along with the literature on prestige and reputation, this paper contributes to

the growing literature on the economics of science, beginning with Smith (1759), reignited by Nelson

(1959) and Arrow (1962), and summarized by Stephan (1996). Polanyi (1962) and Tullock (1966) model

the scientific enterprise as a set of rules by which researchers interact, jointly building the broader

organization of science—these I take as influential in my model. Regarding prestige in science (more

loosely defined), the literature has noticed the inequality in influence since at least Robert Merton

(1968), who famously calls this the Matthew Effect: “the rich get richer, the poor get poorer.” In

economics, this inequality is often called a winner-take-all market (when the mechanism is supply-side:

Cook and Frank 2010; 2013) or a positional good (when the mechanism is demand-side: Carlsson

et al. 2007; Schneider 2007). Regarding my methods, many recent papers tackle economic questions

in science through the use of bibliographic data, and from these I draw inspiration (Wu et al. 2019;
2See Azoulay et al. (2019) who look at the shock of an unexpected death of a star researcher for a similar difference-

in-differences empirical design.
3See Appendix C.1 for discussion about appropriate causal interpretations.
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Azoulay et al. 2019; Angrist et al. 2020; Liu et al. 2023; Hager et al. 2024; Hill and Stein 2025a; 2025b;

Hill et al. 2025; Tripodi et al. 2025). Finally, Huber et al. (2022) ask a question closely related to my

hypothesis: does the prestige of the listed author names affect peer-review feedback? The authors ran

a preregistered field experiment soliciting 534 peer reviews on a finance paper while only listing either

economics Nobel Laureate Vernon Smith or his (relatively unknown) coauthor Sabiou Inoua; they find

significantly lower rejection rates and better comments across the board with the name of the Nobel

listed instead of the novice.

This paper combines the narrowly economic approach with the approach of the cross-disciplinary

“science of science” papers: that is, I propose a model-grounded hypothesis and test it using the micro-

econometric toolkit, while the research question explicitly compares characteristics across scientific

fields. My unique contribution is twofold: first, it is to translate the concept of prestige into the

language of economics through reputation, and second, it is to use this to examine the organization of

science based on two substitutable methods of learning. I aim to uncover one aspect of the scientific

“rules of the game,” and if I am successful, this has the potential to inform downstream questions about

incentive structures, evaluation funding, and allocation of researchers.

Data. The data used for all analyses in this paper are from SciSciNet (Lin et al. 2023) a large-scale

relational data lake of scientific contributions, authors, outlets, and institutions. SciSciNet builds on

Microsoft Academic Graph (Sinha et al. 2015; Wang et al. 2019; Wang et al. 2020) and OpenAlex

(Priem et al. 2022) and has become a standard for open and transparent research on the science of

science. I limit my analyses to the years 1900 to 2015. See Appendix B for relevant summary statistics.

The paper proceeds as follows: I present the model in Section 2, conduct the wide-scale regression

analysis in Section 3, conduct the paradigm shift event study in Section 4 and conclude with a discussion

in Section 5.

2 A Model of Prestige-Testability Tradeoff

2.1 General model

Let us begin with a simple reputation model. Suppose there are two markets A and B that are

independent and are identical except for one distinguishing feature, a delay in quality revelation. At

time t = 0, the good is produced and sold in both markets. The quality of good XA is revealed at

time t = 1 as either high or low (h or l), but the quality of good XB is revealed at time t = 2.
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For simplicity, buyers are only interested in buying the high-quality good Xh
i at price ph, but there

is some chance the seller cheats and that they are sold a low-quality good at the high-quality price. If

a seller cheats, this imposes a per-period penalty c on the buyer for every period he holds the good.

That is, in market A, when the buyer finds out he bought a low quality good at time t = 1, he incurs

cA = c > 0. In market B, when the buyer finds out he bought a low quality good at time t = 2, he

incurs cB = c + βc = c(1 + β) where β ∈ [0, 1] is the one-period discount factor.

Finally, let α denote the buyer’s belief that a given seller will not cheat on the next sale. This can

(but needn’t) be imputed from past play: if the buyer observes the fraction of times each firm has

cheated in the past 1 − α, and thus infers that an Xh
i is truly high quality with probability α ∈ [0, 1].

The expected utility of a buyer in market i is thus

Ui(αi) = αi(v − ph) + (1 − αi)[−ci − ph], (1)

where v is the value he derives.

The buyer’s participation constraint is thus Ui(αi) ≥ 0 :

αi(v − ph) + (1 − αi)[−ci − ph] ≥ 0. (2)

Solve for αi:

αi ≥ ci + ph

(v − ph) + (ci + ph) = ci + ph

v − ci
. (3)

.
Since the cost of being cheated in market B carries over into two periods, cA < cB, and thus

α∗
A < α∗

B . Or, more specifically,

α∗
A = c + ph

v − c
<

c(1 + β) + ph

v − c(1 + β) = α∗
B (4)

This has the following intuitive interpretation:

Proposition 1. Consumers require more quality assurance in a market with longer-lived quality

uncertainty.

In other words, a market where a good’s quality remains uncertain for longer will rely more on

reputation (in this case past performance). We can generalize this based on variations in the discount

factor β and delay in quality revelation. For the myopic buyer with β = 0, c(1 + β) = c and thus

α∗
A = α∗

B ; reputation does not matter for him. For a new market j where the quality is revealed after

time t = τ > 2, cj = c(1 + β)τ , making the reliance on reputation stronger.

Where αi corresponds to a seller’s reputation α̂i ∈ [0, 1] as the past non-cheat-rate, markets A

and B can be compared directly on concentration of α̂i. Assume the baseline CDF for the sellers’
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reputations is G(x), and buyers screen using cutoffs α∗
A and α∗

B with α̂∗
A < α̂∗

B by Inequality 4. The

distribution of reputations among active sellers in market i is the conditional CDF

Gi(x) ≡ Pr(α̂ ≤ x | α̂ ≥ α∗
i ) = G(x) − G(α∗

i )
1 − G(α∗

i ) (x ≥ α∗
i ). (5)

Because G is nondecreasing and α∗
A < α∗

B , it follows that

GB(x) ≤ GA(x) (6)

for all x, and with strict inequality on [α∗
B , 1) when G(x) < 1 (proof in Appendix A). Thus the active

reputation distribution in B first-order stochastically dominates that in A: slower revelation raises the

participation cutoff and truncates the active pool to the right, leaving only higher-reputation sellers.

This leads to the straightforward relationship between length of uncertainty, reliance on reputation,

and equilibrium of reputation-level concentration based on the participation constraint:

Proposition 2. When consumers’ quality assurance beliefs correspond with past seller performance

through a reputation marker, markets with longer-lived quality uncertainty show greater concentration

of reputation markers.

2.2 The model in research production

In the context of scientific research production, Proposition 1 can be restated as follows:

Proposition 3. Science evaluators require more quality assurance in a scientific field with longer-lived

quality uncertainty.

Fields that produce ideas that are more testable reduce the quality revelation time, and thus we should

expect these fields to rely less on the the reputation of the researcher in the evaluation of the ideas.

Likewise, Proposition 2 can be restated as follows:

Proposition 4. When science evaluators’ quality assurance beliefs correspond with past researcher

performance through a reputation marker, fields with longer-lived quality assurance show greater

concentration of reputation markers.

For completeness, let us interpret each parameter in the domain of scientific production. The

good is an article, book, or otherwise one unit of scientific output; the producing firm is the author(s)

of the work; the buyer is the scientific community. Reputation based on success in the past can be

directly interpreted as prestige.4 Past citations accrued to an author is thus a natural, albeit imperfect,
4Reputation based on an extra-market signal would not be a measure of prestige, conventionally defined (Henrich

and Gil-White 2001).
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measure of prestige.5 Other measures such as productivity, h-index, or institution ranking are also

natural proxies, but note that while prestige is a powerful mechanism, it is a nebulous term, and is

best defined in context.

In practice, the value v placed on a unit of output, the price ph, and even the cost c of holding a

low quality good may all vary across scientific fields, corroborating our ability to directly compare

prestige-reliance and concentrations across fields. For example, a new output in chemistry (say a drug)

may be more valuable than a new output in history (vA > vB), the price the community is willing to

pay may reflect this (ph
A > ph

B), and we may suffer less from a mistaken historical account than from

an inappropriately prescribed drug (cB < cA).

Notice in Inequality 3, however, that as the limit of (v − ph) → 0, α → 1. This means that with no

consumer surplus, the buyer must be certain he is receiving a high quality good and will only buy

from a firm with no past low quality output. While it is logically possible that there is more consumer

surplus per unit in certain fields of science, there is no a apriori reason to expect this to be connected

with testability nor consistent over time. To make the general model more tractable for science, we

can assume that the price paid and value received are non-monetary for the buyer—whether or not

the community approves of a new idea is constant in shadow price across disciplines. This matches the

common sentiment and empirical findings that the production of specific scientific inquiry is largely

independent of financial incentives (Stern 2004; Myers 2020).

To summarize the model, the scientific community accepts or rejects ideas from researchers based

on expected utility, which is a function of a researcher reputation belief and the costs of adopting a

low-quality idea. In other words, there is some combination of researcher prestige and idea testability

that together allow the community to accept the idea; those attributes are substitutes in consumption.

In fields that are less testable—fields where ideas have longer-lived quality uncertainty—a higher

reputation threshold is necessary to satisfy the participation constraint, and this mechanically leads

to greater concentration of prestige markers. With the above qualifications, this grounds my simple

hypothesis of a prestige-testability tradeoff in science.
5Unlike in Shapiro (1983), researcher reputation cannot be transferred—it expires with death. This gives the

straightforward prediction that researchers will “cash in” on their reputation and produce less testable research as they
reach some age threshold. I leave this for further research.
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3 Regression analysis
My first empirical test takes the widest possible lens. Namely, I look for an association between the

testability of a field of study and the concentration of its prestige markers. To this end, I adopt the

universe of bibliographic data from nineteen scientific fields from 1900 to 2015 from SciSciNet (Lin et al.

2023).6 This gives me 149,967,677 distinct authors and 74,013,927 contributions published as journal

articles (for full summary statistics broken down by field, see Appendix B). For these associative

estimates, I use the following three measures as prestige markers: author citations, author h-index,

and paper citations. Because these are voluntarily awarded by the scientific community, I expect this

to capture a realistic portrait of the prestige hierarchies, even if imperfect.

In the first series of OLS regressions I take the scientific field in each year as the unit of analysis,

testability as the independent variable, with the concentration (HHI) of the three prestige measures as

the dependent variables.

log HHIf,t = α + β Testabilityf,t + Xf,tγ + λt + εf,t (7)

where f is field, t is year, X is controls, and λ is year fixed effects. In the second series of OLS

regressions, I repeat the procedure, but take the scientific subfield in each year as the unit of analysis

and examine variation within the fields by adding µ as a field fixed effect.

log HHIs,t = α + β Testabilitys,t + Xs,tγ + µf + λt + εs,t (8)

The coefficient of interest is β, which I hypothesize to be negative. Table 1 presents a description

of each of unit and variable including controls, and Table B1 presents summary statistics, and Table

2 presents results. Across all regressions for fields and subfields, the coefficient of interest is indeed

negative. As an interpretation of a typical coefficient: a 10 percentile increase in testability across

fields is associated with a 6.85% decrease in the concentration of Author Citations, holding year fixed

(Table 2, Panel A, column 3), or a 10 percentile increase in testability across subfields is associated

with an 10.15% decrease in the concentration of Author H-index, holding year and field fixed (Table 2,

Panel B, column 6). Figure 1 shows the testability gradient mapped on to Author Citation HHI; this

corresponds to the first column in Table 2, Panel A, though it is not the regression proper.

6Each paper is assigned one of these nineteen "top" fields in SciSciNet: Art, Biology, Business, Chemistry, Computer
science, Economics, Engineering, Environmental science, Geography, Geology, History, Materials science, Mathematics,
Medicine, Philosophy, Physics, Political science, Psychology, Sociology.
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Table 1: Variables and Definitions for OLS Analysis
Item Type Definition
Field Unit for 1.1-1.9 Unique top fieldid (19 total), assigned by SciSciNet.
Subfield Unit for 2.1-2.9 Unique sub fieldid mapped to a top field using the 12

most common per year.
Testability Independent Percent incidence of the string “ test” (with leading space)

in titles in each unit–year (random 10% sample for fields
and subfields), normalized to a percentile.

Paper-citation HHI Dependent Herfindahl–Hirschman Index over all paper citations in
the unit–year. Logged for interpretation.

Author citation HHI Dependent Herfindahl–Hirschman Index over all author citations in
the unit–year. Logged for interpretation.

Author h-index HHI Dependent Herfindahl–Hirschman Index over all lifetime h-indexes for
authors active in the unit–year. Logged for interpretation.

Team size Control Median team size calculated over unit-year.
# Active authors Control Number of active authors calculated over unit-year.

Note. See Table B1 in Appendix B for summary statistics.

Table 2: OLS Results: Testability on Concentration of Prestige Markers
Panel A: Fields Dependent variable:

log Author-Cite HHI log Author H-index HHI log Paper Cite HHI

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Testability (percentile) −1.003∗∗∗ −0.691∗∗∗ −0.685∗∗∗ −0.941∗∗∗ −0.658∗∗∗ −0.646∗∗∗ −0.811∗∗∗ −0.548∗∗∗ −0.540∗∗∗

(0.111) (0.091) (0.091) (0.086) (0.064) (0.064) (0.104) (0.089) (0.089)
Team Size −1.520∗∗∗ −1.427∗∗∗ −1.377∗∗∗ −1.177∗∗∗ −1.278∗∗∗ −1.143∗∗∗

(0.047) (0.064) (0.033) (0.044) (0.046) (0.062)
# Active Authors −0.000∗∗ −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 2,204 2,204 2,204 2,204 2,204 2,204 2,204 2,204 2,204
R2 0.643 0.762 0.762 0.784 0.882 0.884 0.628 0.729 0.730
Adjusted R2 0.623 0.748 0.749 0.772 0.875 0.878 0.608 0.713 0.715

Panel B: Subfields Dependent variable:
log Author-Cite HHI log Author Hindex HHI log Paper Cite HHI

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Testability (percentile) −0.984∗∗∗ −0.848∗∗∗ −0.852∗∗∗ −1.145∗∗∗ −1.003∗∗∗ −1.015∗∗∗ −0.832∗∗∗ −0.740∗∗∗ −0.747∗∗∗

(0.031) (0.029) (0.029) (0.027) (0.025) (0.025) (0.029) (0.028) (0.028)
Team Size −0.612∗∗∗ −0.595∗∗∗ −0.635∗∗∗ −0.574∗∗∗ −0.413∗∗∗ −0.379∗∗∗

(0.011) (0.012) (0.009) (0.011) (0.011) (0.012)
# Active Authors −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Field FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 24,899 24,899 24,899 25,054 25,054 25,054 24,899 24,899 24,899
R2 0.833 0.852 0.853 0.887 0.905 0.906 0.807 0.818 0.818
Adjusted R2 0.832 0.852 0.852 0.886 0.904 0.905 0.806 0.817 0.817

Note. There is a negative association between testability and these three prestige
markers, across the nineteen fields, and across subfields, holding fields fixed.

∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01
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Figure 1: Author-citation Concentration and Testability. Note: The prestige-testability tradeoff hypothesis says that there should be lower
testability (dark) where there is higher concentration of prestige markers (top), but note that all regressions reported in Table 2 include year
fixed effects. Testability is measured as the incidence of the string “ test” (space included) in titles among the fields, and factored as percentile.
HHI is calculated as hhif,t =

∑n
i=1

(
citesi,t

totalcitesf,t

)2
, where f is a field, t is a year, i is an individual author who publishes a contribution in that

field-year, n is total active authors in that field-year. Number of field-years = 2204. The order of fields in the key is ranking in last observed
year (2015).
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4 Paradigm Shift Event Study

Edward Leamer (1983) famously wrote the following in a paper entitled “Let’s Take the Con out of

Econometrics”: “Hardly anyone takes data analyses seriously. Or perhaps more accurately, hardly

anyone takes anyone else’s data analyses seriously. Like elaborately plumed birds who have long since

lost the ability to procreate but not the desire, we preen and strut and display our t-values.” In

2010, Joshua Angrist and Jörn-Steffen Pishke (2010, 3-4) reflect: “[Leamer’s] critique had a refreshing

emperor’s-new-clothes earthiness that we savored on first reading and still enjoy today. But we’re

happy to report that Leamer’s complaint that ‘hardly anyone takes anyone else’s data analysis seriously’

no longer seems justified. Empirical microeconomics has experienced a credibility revolution, with

a consequent increase in policy relevance and scientific impact.” In 2021, Angrist was awarded the

Nobel Prize in Economics with David Card and Guido Imbens for their contributions that sparked

this “credibility revolution” in empirical economics; their main contributions were developed in the

early- and mid-1990s.

The credibility revolution is a clear example of a scientific paradigm that aims to shift a field

toward “testability.” For the sake of this paper, I am agnostic to the metaphysical truth claims of

any given study, within the credibility revolution or otherwise. But it is not my interpretation that

matters: as long as the new scientific practices revolutionized the ability for practitioners to “take

anyone else’s data analyses seriously,” we have a genuine shift in the testability parameter.7

Here I take on the task of parsing out the effect that this paradigm shift had on prestige of its

participants. That is, I am interested on the effects of researchers who select into the credibility

revolution. With any successful paradigm shift, testability-related or otherwise, we would expect the

participants to gain prestige. But if my testability-prestige tradeoff hypothesis holds, we should expect

the strongest effects for those who did not have prestige prior to their participation in a “more” testable

subject matter. Intuitively a shift toward testability can lift up the previously unrecognized—the

quality of the output is revealed much sooner.

To approach my measurement, I adopt a staggered event study design. The pool of researchers is

3,284 authors who publish a paper that cites a set of five “credibility revolution” seed papers: Angrist

and Imbens (1994), Card and Krueger (1994), Bound et al. (1995), Angrist et al. (1996), and Staiger

and Stock (1997) (see Appendix C.2 for summary statistics). I take an author’s first publication
7In terms of my model in Section 2 this is a shift from a later quality revelation time to an earlier quality revelation

time.
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that cites a seed paper as the method of treatment, and once a researcher is treated they remain

forever treated. While this is perhaps not the tightest possible definition of joining the credibility

revolution—an author could critically cite a seed paper—I use this method for transparency and to be

consistent in using citations as a measure of prestige-deference. This setup fits nicely into the event

study method proposed by Sun and Abraham (2021): it reflects staggered treatment and we certainly

expect heterogeneous treatment effects. The main specification is as follows:

yit =
∑

k∈Z\{−1}

βk

(∑
g∈G

1{Ci = g} 1{t − g = k}

)
︸ ︷︷ ︸

Sun–Abraham cohort×event-time dummies

+ µt + εit ,

where outcomes and variables are defined in Table 3. Note that this is built from a simple 2 × 2

difference-in-differences design. At its core, the goal is to compare authors who adopt the new

“testability” regime to their potential outcome had they not adopted the regime, and then ultimately

how this “treatment effect” varies among the kinds of authors who participate (see Appendix C.1 for

a full interpretation based on potential outcome notation). Because the sample is restricted to only

authors who eventually adopt the new paradigm, the source of variation is the timing of adoption.

Along with this main specification I also estimate a “strict” version where I introduce subfield

level fixed effects (along with year) µf(i),t. Finally, I investigate the heterogeneity by below and above

median pre-adoption prestige.8 While the actual outcomes of adopting authors may be interesting in

its own right, this heterogeneity is the relevant test of my hypothesis.

Results. The main event study paths are presented in Figure 2 and the event study paths broken

down by pre-treatment heterogeneity are presented in Figure 3. In the aggregate, there is a modest

increase in all outcomes post adoption. Figure 2, A shows that post-treatment, cohorts receive between

about 0.1 to 0.2 standard deviations more citations within five years of publishing their papers,

compared to the estimated counterfactual of the not-yet-treated; this effect persists over the decade

post treatment. Similarly, Figure 2, B shows an increase in about 0.1 to 0.3 standard deviations more

citations within 10 years of publication, compared to the counterfactual. Figure 2, C shows that

treated cohorts are about 3% to 8% more likely to have a “hit” paper in their field, defined as being in

the top 10 % of papers in lifetime citations. Figure 2, D shows that treated cohorts publish Top-5

papers 1% to 3% more than the control group, though this effect vanishes with subfield controls. For

8Or: yit =
∑

k∈Z\{−1} β
(q)
k

(∑
g∈G 1{Ci = g} 1{t − g = k}

)
+ µ

(q)
t + εit, i ∈ Qq .
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Table 3: Variables and Definitions for Event Study: Main: Strict, and Heterogeneity

Item Symbol Definition
Unit of observation i, t Author i in calendar year t.
Treatment cohort
(adoption year)

Ci First year i publishes a paper that cites any of the five
seed papers (once treated, always treated).

Event time
(reference k = −1)

k ≡ t − Ci Relative year to adoption; k = −1 is the omitted
(reference) period.

Outcomes yit Field-normalized 5 year citations (c5_z),
field-normalized 10 year citations (c10_z), top 10 %
paper in the field by lifetime citations (hit10), top-5%
share (top5).

SA cohort ×
event-time dummies

SAitk Sun–Abraham (2021) basis:
SAitk ≡

∑
g∈G

1{Ci = g} 1{t − g = k}.

Interaction weight βgk Sun–Abraham interaction weight for cohort g at event
time k; event-time coefficients are aggregated as
β̂k =

∑
g∈Gk

βgk, τg(k) with
∑

g∈Gk
βgk = 1 for each k.

This allows cohorts to contribute based on size without
negative weighting.

Main fixed effects µt Calendar-year FE (absorbed).
Strict fixed effects µs(i),t Subfield × year FE (absorbed), where s(i) maps

author i to subfield-year handles.
Heterogeneity,
pre-period set

T pre
i Author-specific pre-treatment years observed:

T pre
i = {t < Ci : yit observed}.

Pre-treatment
summary for
ranking

ȳpre
i Mean (or median) outcome over T pre

i used to rank
authors prior to treatment for that outcome.

Heterogeneity group Qi ∈ {1, 2} Two heterogeneity bins for median split of ȳpre
i among

not-yet-treated authors in the risk set.
Group indicator(s) Diq = 1{Qi = q} Time-invariant dummies; interactions SAitk ×Diq

allow the path to differ by pre-period heterogeneity.
Event study
estimating
equations

— Main/Strict: yit =
∑

k ̸=−1
βk SAitk + FE + εit.

Heterogeneity:
yit =

∑
k ̸=−1

βk SAitk +
∑

k ̸=−1
δk SAitkDi2 + FE + εit.

Inference (clusters) — Two-way clustering by author and FE dimension (year
for Main; Subfield ×year for Strict).

Figure trimming k ∈ [−15, 15] For plots, event-time paths are trimmed to a
symmetric window where support is adequate.

each outcome, pre-trends are flat, except for a jump within 2-5 years of treatment, arguably due to

anticipatory behavior. Anticipation may be likely in this case, as papers take time to achieve final

publication, but here I present an unadjusted event-study for transparency.9 These results, though
9See Appendix C for a full discussion of assumptions including around no-anticipation.
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Figure 2: Authors who cite credibility revolution seed papers see the following outcomes: Panel A 0.1 to 0.2
standard deviations increase in their 5-year citations, sustained for 10 years post adoption; Panel B 0.1 to 0.3
standard deviations increase in their 10-year citations, sustained for 10 years post adoption; Panel C 3% to
8% increase in their likelihood of achieving a “hit paper” (defined as a paper achieving lifetime citations in the
top decile of the field); Panel D a 2% to 3% increase in the share of their papers that make it into a Top-5
journal. Controlling for subfields, these effects are not all statistically significant. Staggered event study paths
are calculated using Sun and Abraham (2021) interaction weighted estimates; units are adoption-year cohorts,
reported N is author-years. Reference year is k = −1. See Appendix C.2 for summary statistics.

perhaps real, say little with respect to my prestige-testability hypothesis, however.

To shed light on the hypothesis of interest, I break the event study estimates down by the

heterogeneity of the outcomes of interest in the pre-treatment period. For this exercise, I calculate each

author’s average pre-treatment outcome and slit the sample on a simple binary below and above the

median. My hypothesis would imply that lower-prestige individuals benefit more from the testability

shock. Figure 3 give us visual credence.

Figure 3 shows that the low-baseline group consistently sees greater post adoption effect compared

to their high-baseline peers, and in many cases the the high-baseline group sees null or negative effects.

In particular, low-prestige authors see a 0.1 to 0.3 standard deviations increase in their 5-year citations,
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Figure 3: Unpacking by pre-adoption heterogeneity, the gains by joining the credibility revolution are notably
concentrated in the low-prestige authors. Specifically, authors who cite credibility revolution seed papers see the
following outcomes: Panel A low-prestige authors see a 0.1 to 0.3 standard deviations increase in their 5-year
citations, while their high-prestige peers see a change of −0.1 to 0.1 standard deviations, and this difference is
sustained for 10 years post adoption; Panel B low-prestige authors see a 0.1 to 0.4 standard deviations increase
in their 10-year citations, while their high-prestige peers see a change of −0.1 to 0.2 standard deviations, and
this difference is sustained for 5 years post adoption; Panel C low-prestige authors see a 12% to 19% increase
in their likelihood of achieving a “hit paper” (defined as a paper achieving lifetime citations in the top decile of
the field), while their high-prestige peers see a 1% to 7% decrease in their likelihood, and this difference is
sustained for 10 years post adoption; Panel D low-prestige authors see a 2% to 3% increase in the share of
their papers that make it into a Top-5 journal, while their high-prestige peers see a 1% to 10% decrease (note
that negative pre-trends for the high-prestige group indicates that their Top-5 share increased each year until
peaking at k = −1). Staggered event study paths are calculated using Sun and Abraham (2021) interaction
weighted estimates; units are adoption-year cohorts, reported N is author-years. Reference year is k = −1. See
Appendix C.2 for summary statistics.

while their high-prestige peers see a change of −0.1 to 0.1 standard deviations, and this difference

is sustained for 10 years post adoption; low-prestige authors see a 0.1 to 0.4 standard deviations

increase in their 10-year citations, while their high-prestige peers see a change of −0.1 to 0.2 standard

deviations, and this difference is sustained for 5 years post adoption; low-prestige authors see a 12%

to 19% increase in their likelihood of achieving a “hit paper,” while their high-prestige peers see a
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1% to 7% decrease in their likelihood, and this difference is sustained for 10 years post adoption; and

low-prestige authors see a 2% to 3% increase in the share of their papers that make it into a Top-5

journal, while their high-prestige peers see a 1% to 10% decrease (note that negative pre-trends for the

high-prestige group indicates that their Top-5 share increased each year until peaking at k = −1). I

interpret this leveling effect as support for the prestige-testability tradeoff.

5 Conclusion

“Standing on the shoulders of giants” is a necessary step for scientific progress. But, to extend the

metaphor, the need for giants is endogenous to the height of the tree of knowledge where the researcher

is looking for fruit. This has been my hypothesis. Or: the kind of knowledge in some fields lends

itself to be more testable than in others, and thus a variation of the need for prestige deference across

fields. This materializes into a higher concentration of prestige markers, which is consistent with the

wide-scale evidence I present in Section 3.

Furthermore, changes in the testability of a field can in turn affect the degree to which its prestige

hierarchy is maintained. I explore this using an event study design over the credibility revelation, a

paradigm shift in economics. I find that pre-adoption low-prestige researchers who opt in to the new

paradigm see consistently larger gains than their high-prestige peers. I take this leveling effect as

evidence of the prestige-testability tradeoff.

Note that my primary goal has been to elucidate an aspect of the structure of scientific inquiry, and

not to promote policy prescriptions. That said, if the hypothesis holds water, it may have implications

for other important questions in the organization of science. Here I discuss a few.

1. Reliance on prestige markers to evaluate researchers is not inherently good or bad. Indeed, when

the kind of knowledge being produced does not allow for quick and easy test, verification, or

falsification we still must find some way to evaluate ideas. In these cases prestige markers may

be as good as any.

2. It may be beneficial for society to promote more diversity of scientific ideas than ones that

appear through “normal” channels. After all, breakthrough scientific ideas can exhibit huge

positive spillover effects, and it has been shown that science, like other ventures, follows a

positive risk-reward path (Azoulay et al. 2011; Azoulay and Greenblatt 2025). On this front, the

framework from the prestige testability trade-off hypothesis implies different things for different
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fields. In the more testable fields and subfields, research evaluators should allow many more shots

on goal, reduce their reliance on prestige markers, and allow the scientific community to assess

the testable claims quickly. In less testable fields and subfields, research evaluators might have no

other choice than to rely on prestige markers for evaluation—that is okay, and it may be futile or

destructive to introduce testability criterion on a subject matter that does not warrant it. But it

does not follow that evaluators should be limited to judgment based only on publication numbers,

citations, or institutional rankings. Prizes and tournaments could reward prestige while reducing

the “time to build” reputation, increasing diversity of ideas and turnover of dominant influence.

3. While a testability shock can lead to less reliance on prestige markers and thus constitute

a move to a more meritocratic system, testability shocks are not a choice variable of policy

makers in government, academia, or scientific publishing; rather, they are endogenous to the

research production itself. A paradigm shift that leads to more testability (as with the credibility

revolution) may be attractive to the less prestigious, but it must first play by the rules of the

incumbent paradigm to be successful. Research evaluators should be mindful of the margins they

can control.

4. Testability is only one dimension of the differences in subject matter across scientific fields, and

I have avoided discussions of researcher-side field self-selection based on testability or prestige

hierarchies. I would argue that any policy that changes testability criteria or prestige marker

deference must account for the framework I present, but it is certainly not the only spring from

which streams of incentives flow.

5. The prestige-testability tradeoff warrants further consideration as a factor in other aspects of the

structure of science. For example, it has been noted that the age of researchers at which major

scientific discovers occur varies considerably over time, and varies somewhat across fields (Jones

2009; 2010; Jones and Weinberg 2011). Age of discovery may be a function of how various fields

(and time periods) test output which in turn shapes the underlying prestige hierarchy.10

As I present here, the prestige-testability tradeoff may prove most fruitful in uncovering the on-the-

ground dynamics of paradigm shifts across fields, space, and time. Indeed, given the simplicity of the

hypothesis, it likely a feature of a wide variety of social learning environments besides science: will a
10In these discussions, however, little attention is paid to the sheer increase in number of researchers since 1950 (see

Figure B6).
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flood of artificially generated content suppress the direct “testability” in media and spur consumers

to require signals of prestige from the presenter? Or conversely, if prestigious individuals abuse their

platforms, can this induce a shift toward testability? If the prestige-testability tradeoff is a real

structural phenomenon, it may have implications across education, politics, and culture.
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Appendix A: Proof of Inequality 5

Let reputations α̂ ∈ [0, 1] have baseline CDF G. Let the thresholds satisfy α∗
A < α∗

B < 1. Define the

active-seller CDF as the conditional CDF of reputations given survival above the threshold: for market

i,

Gi(x) ≡ Pr(α̂ ≤ x | α̂ ≥ α∗
i ).

Thus, for x ∈ [α∗
i , 1),

Gi(x) = Pr(α∗
i ≤ α̂ ≤ x)

Pr(α̂ ≥ α∗
i ) = G(x) − G(α∗

i )
1 − G(α∗

i ) .11

For market i ∈ {A, B}, the active-seller CDF is

Gi(x) =



0, x < α∗
i ,

G(x) − G(α∗
i )

1 − G(α∗
i ) , α∗

i ≤ x < 1,

1, x ≥ 1.

(A1)

Claim. For all x, GB(x) ≤ GA(x); the inequality is strict for x ∈ [α∗
B , 1) whenever G(x) < 1.

Proof. (i) If x < α∗
B , then by (A1) GB(x) = 0 ≤ GA(x).

(ii) If α∗
B ≤ x < 1, set a := G(x) and bi := G(α∗

i ). By monotonicity of G and α∗
A < α∗

B, we have

bA ≤ bB. Define f(b) := a−b
1−b for b ∈ [0, 1). Because a < 1, f ′(b) = a−1

(1−b)2 < 0, so f is strictly

decreasing. Thus

GB(x) = f(bB) ≤ f(bA) = GA(x),

with strict inequality if either bA < bB or a < 1.

(iii) If x ≥ 1, then GB(x) = GA(x) = 1.

Combining (i)–(iii) yields GB(x) ≤ GA(x) for all x, with strict inequality on [α∗
B , 1) when G(x) < 1.

Hence the active reputation distribution in B first-order stochastically dominates that in A.

11If there is mass at α∗
i and “active” means α̂ ≥ α∗

i , replace G(α∗
i ) by the left limit G(α∗−

i ).
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Appendix B: Regression analysis supplements

Table B1: Summary statistics for regression analysis
Panel A: Sample structure

Field–year Mean Median Min Max p90 p99 N
Years — — 1900 2015 — — 116
# Papers 29921 5235 96 856259 79196 337625 2204
# Authors 61213 6341 101 2173377 149684 831811 2204
# Titles used for Testability 2992 526 5 85658 7935 33700 2204

Subfield–year Mean Median Min Max p90 p99 N
Years — — 1900 2015 — — 116
# Papers 2289. 286 1 212064 5743. 29962. 26415
# Authors 5944. 364 1 745382 12402. 101774. 26415
# Titles used for Testability 146. 15 0 21180 351 2126. 54099

Panel B: Descriptive statistics

Field–year Subfield–year
Variable Mean SD p10 p90 Mean SD p10 p90
Testability (pctile 0–100) 50 28.71 11.3 89.98 50 23.4337 34.9335 90.0686
Paper-citations HHI 0.028 0.064 0.00024 0.0726 0.1419 0.2198 0.001433 0.426

— log -5.28 2.155 -8.339 -2.622 -3.7768 3.8153 -6.5477 -0.8532
Author-citations HHI 0.023 0.054 0.00011 0.0573 0.1199 0.2037 0.00058 0.3543

— log -5.661 2.351 -9.116 -2.859 -4.2026 3.918 -7.4526 -1.0376
Author h-index HHI 0.00474 0.0091 0.000027 0.0136 0.0779 0.1564 0.0002513 0.2175

— log -7.117 2.346 -10.51 -4.299 -4.6552 3.0968 -8.289 -1.5255
Team size (median) 1.305 0.644 1 2 1.3797 0.7833 1 2
# Active authors 61213 175091 679 149684 5943.88 22940.45 21 12402.4
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Figure B1: Sample year scatter plot of author citation HHI and testability.
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Figure B2: Sample decade scatter plot of author citation HHI and testability. Note that all regressions
reported in Table 2 include year fixed effects.
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Figure B3: Author-H-index and Testability. Note: The prestige-testability tradeoff hypothesis says that there should be lower testability (dark) where
there is higher concentration of prestige markers (top), but note that all regressions reported in Table 2 include year fixed effects. Testability is measured as

the incidence of the string “ test” (space included) in titles among the fields, and factored as percentile. HHI is calculated as hhif,t =
∑n

i=1

(
h−indexi,t

h−indexf,t

)2
,

where h − index is the lifetime h-index of an individual author i who is active in field f in year t; n is total active authors in that field-year. Number of
field-years = 2204.The order of fields in the key is ranking in last observed year (2015).
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Figure B4: Paper-citation Concentration and Testability. Note: The prestige-testability tradeoff hypothesis says that there should be lower testability (dark)
where there is higher concentration of prestige markers (top), but note that all regressions reported in Table 2 include year fixed effects. Testability is measured

as the incidence of the string “ test” (space included) in titles among the fields, and factored as percentile. HHI is calculated as hhif,t =
∑n

i=1

(
citesi,t

totalcitesf,t

)2
,

where f is a field, t is a year, i is an individual contribution, and n is number of contributions in the field. Number of field-years = 2204.The order of fields
in the key is ranking in last observed year (2015).
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Figure B5: Contribution Count by Field (log scale). Each contribution is counted as a unique Paper
ID in SciSciNet. Here I include contributions identified as journal articles, books, book chapters, and
conference papers, and I exclude those identified as datasets, thesis papers, repository papers (such
as in ArXive or SSRN) or are left unidentified. This yields 91,479,382 out of the approximately 134
million total contributions in SciSciNet
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Figure B6: Author Count by Field (log scale). Each author is counted as a unique Author ID in
SciSciNet with at least one contribution in a field-year. See Lin et al. 2023, 5, for the method used for
author disambiguation.
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(a) Journal articles. 74,013,927 of ≈ 134M.
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(b) Conference papers. 4,874,808 of ≈ 134M.
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(c) Books. 3,121,693 of ≈ 134M.
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(d) Book chapters. 2,230,448 of ≈ 134M.

Figure B7: Contribution Count by Type (log scale): journal articles, conference papers, books, and book chapters.
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Figure B8: Mean Team Size by Field. Each team size is calculated as the number of distinct authors
on a contribution. These are generated from a 10% sample of contributions in each field-year.
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Figure B9: Median Team Size by Field. Each team size is calculated as the number of distinct authors
on a contribution. These are generated from a 10% sample of contributions in each field-year.
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Appendix C: Event study supplements

C.1 Interpreting the Sun–Abraham Event-Study Estimates with Potential

Outcomes.

An author i joins cohort g when she cites a seed-paper in her adoption year Ci ∈ G ∪ {∞}; never-

adopters have adoption year Ci = ∞. Event time is defined as k = t − Ci, where t is calender time.

The fact that authors’ adoption takes place over calender time give the impetus for the staggered event

study design. Potential outcomes are Yit(c), the outcome for author i in year t if i were to adopt in

year c (with c = ∞ the never-adopt state).

For cohort g and event time k, the causal effect of interest is

τg(k) = E[ Yi, g+k(g) − Yi, g+k(∞) | Ci = g] .

That is, given that some author is in cohort g, the difference between their realized outcome and

their unrealized potential outcome of being untreated is the causal effect to which I approximate with

the following estimation and assumptions.

I estimate an interaction-weighted event study as presented in Sun and Abraham (2021) with

reference period k = −1 omitted and fixed effects µ that are either calendar-year FE (Main) or

subfield-by-year FE (Strict). Let β̂k denote the estimated coefficient at event time k. Under the

assumptions below,

β̂k ≈
∑

g∈Gk

wgk τg(k),
∑

g∈Gk

wgk = 1,

that is, a cohort-weighted average of cohort-specific causal effects for the cohorts Gk that contribute

observations at event time k. The weights wgk reflect the Sun–Abraham interaction-weighting across

cohorts.

Counterfactual and Comparison Set. Conceptually, τg(k) compares the path under adoption in

the observed cohort g to the never-adopt path Yit(∞). Empirically, at each calendar year t, the control

group used by the estimator consists of not-yet-treated (and any never-treated) authors, {i : Ci > t};

already-treated authors (Ci ≤ t) do not serve as controls.

Using authors who are not-yet-treated as a comparison group comes with advantages and disad-

32



vantages. Firstly, if there are hidden variables that cause assortment into ever-treatment status, this

technique can count that out as a determinant of any estimated causal effects; I take this fact as a

strong argument for using the present design, given that authors surely non-randomly choose fields,

topics, methods, and ultimately treatment status. However, by construction the comparison group is

always part of a group that adopts later in calender time; this would introduce bias if calender time of

treatment correlates with effect sizes. For this reason, I include a calender year fixed effect in all my

estimates.

Heterogeneity by Pre-Treatment Outcome. To study whether effects differ across researchers

with different pre-treatment outcome levels, I partition authors into G groups using only information

from the period before adoption. For each outcome Y (e.g., c5, c10, hit10, or top5), I construct a

baseline statistic

Si(Y ) = mediant<Ci Yit,

the author-specific median outcome over pre-adoption years.12 I then rank authors by Si(Y ) and

assign a group label Qi ∈ {1, . . . , G} (e.g., G = 2 for a median split, G = 3 for terciles, or as I present

G = 5 for quantiles). Importantly, the grouping uses only pre-treatment data, so it is unaffected by

post-adoption dynamics.

Given these groups, I estimate an interacted Sun–Abraham specification that allows the dynamic

treatment path to differ across Qi:

Yit =
∑

k ̸=−1

G∑
q=1

β
(q)
k

(∑
g∈G

1{Ci = g} 1{t − g = k}

)
1{Qi = q} + µ + εit,

with the same fixed effects µ as in the main specification (calendar-year FE for Main; subfield×year

FE for Strict) and the same weighting choice (unweighted or wit). Let β̂
(q)
k denote the coefficient for

group q at event time k (normalized so β̂
(q)
−1 = 0). Under the standard identification conditions,

β̂
(q)
k ≈

∑
g∈Gk

w
(q)
gk E

[
Yi, g+k(g) − Yi, g+k(∞)

∣∣∣ Ci = g, Qi = q
]
,

∑
g∈Gk

w
(q)
gk = 1,

so each β̂
(q)
k can be read as the average (across contributing cohorts) causal effect at event time k

for authors who started in heterogeneity group q, relative to their never-adopter counterfactual, with
12For never-adopters (Ci = ∞), the baseline Si(Y ) is computed over all observed years. Authors without any pre-period

observations for a given outcome are not assigned to a group for that outcome. Ties are broken deterministically.
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k = −1 as the pre-adoption reference.

Interpretation. The group-specific paths {β̂
(q)
k } trace out how treatment effects evolve for authors

with “lower” vs. “higher” baselines. Differences across groups reflect systematic heterogeneity present

before adoption, not changes induced by treatment. This focus on pre-treatment heterogeneity is

integral for my interpretation of a prestige-testability tradeoff. As with the main estimates, valid

interpretation requires (i) no anticipation; (ii) parallel trends in the never-adopt state conditional on

the fixed effects; and (iii) adequate support from not-yet-treated controls within the fixed-effect cells

for each group and event time.

Assumptions for Causal Interpretation.

1. No anticipation. For any cohort g,

Yit(g) = Yit(∞) for all t < g.

2. Parallel trends in the never-adopt path (conditional on FE). For any cohorts g1, g2 and

any t < min{g1, g2},

E
[

Yi,t+∆(∞) − Yit(∞)
∣∣ Ci = g1, FE

]
= E

[
Yi,t+∆(∞) − Yit(∞)

∣∣ Ci = g2, FE
]

for all feasible ∆ ≥ 0 with t + ∆ < min{g1, g2}. (In the heterogeneity runs, the same condition

holds within each pre-treatment group Qi = q.)

3. SUTVA / no interference. Let D−i denote others’ adoption histories. Then

Yit(c, D−i) = Yit(c) for all c ∈ G ∪ {∞}, t, D−i.

(Outcomes for author i are unaffected by other authors’ adoption timing.)

4. Heterogeneous treatment effects allowed; group-specific parallel trends. Cohort- and

time-specific effects τg(k) (and, with heterogeneity, τ
(q)
g (k)) may vary arbitrarily. Identification

relies on the parallel-trends condition within Qi = q; no homogeneity is assumed. Formally, for
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any g1, g2 and all t, s < min{g1, g2},

E
[

Yit(∞)
∣∣ Ci = g1, Qi = q, FE

]
− E
[

Yis(∞)
∣∣ Ci = g1, Qi = q, FE

]
= E

[
Yit(∞)

∣∣ Ci = g2, Qi = q, FE
]

− E
[

Yis(∞)
∣∣ Ci = g2, Qi = q, FE

]
.

Discussion of assumptions and interpretation.

1. No anticipation. Authors do not adjust outcomes before their first seed-citation year because

of that future adoption. However, in reality, authors “truly adopt” before the final publication,

as it requires “time to build” a publication, often over multiple years. In practice, anticipatory

behavior that effects outcomes would show changes before the adoption date. For transparency,

I present the main results without accounting for anticipatory behavior.

2. Parallel trends (never-adopt path). Conditional on the fixed effects, cohorts would have

followed the same evolution in the counterfactual “never-adopt” state. Year FE (Main) soak up

aggregate time shocks; subfield×year FE (Strict) absorb field-specific time shocks. Remaining

differential drift across cohorts within those cells would bias the SA contrasts; the pre-trend tests

are designed to detect this, but, as always, parallel trends cannot be tested directly.

3. SUTVA / Spillovers. One author’s adoption should not mechanically alter another author’s

outcome except through common shocks already absorbed by FE. If spillovers are plausible (e.g.

peers’ adoption affects citations), this would bias estimates. Because I cannot rule this out, we

may discount the precision of the estimates as follows.

Let Yit(d, s) denote author i’s potential outcome in year t when her own treatment status is

d ∈ {0, 1} (untreated/treated by t) and her exposure to others’ adoption is s ∈ [0, 1] (e.g.,

the share of peers/coauthors/field colleagues already treated at t). SUTVA corresponds to

Yit(d, s) = Yit(d, 0) for all s (no exposure effect). Our target at event time k for cohort g is

τg(k) = E[ Yi, g+k(1, 0) − Yi, g+k(0, 0) | Ci = g] .

With spillovers, the IW estimator contrasts treated observations with not-yet-treated controls
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who may have s > 0, yielding

β̂k ≈ τg(k) + Bgk, Bgk = E
[
Yg+k(1, ST ) − Yg+k(1, 0)

]︸ ︷︷ ︸
spillover on treated

− E
[
Yg+k(0, SC) − Yg+k(0, 0)

]︸ ︷︷ ︸
spillover on controls

,

where ST and SC are the (possibly different) exposure levels faced by treated and control groups

at (g, k).

For sign intuition, adopt a simple additive exposure model

Yit(d, s) = Yit(d, 0) + θ
(d)
t s,

with θ
(1)
t (spillover slope when treated) and θ

(0)
t (when untreated). Then

Bgk = θ
(1)
g+k E[ST ] − θ

(0)
g+k E[SC ].

• Case 1 (positive spillover onto controls ⇒ underestimate).

Example: As colleagues begin citing the seed methods, overall attention to the topic rises,

lifting citations even for not-yet-treated authors, so the control group improves too.

Or: If θ
(0)
g+k > 0 and E[SC ] > 0 (controls benefit), while θ

(1)
g+k [ST ] is comparable or smaller,

then

Bgk ≈ − θ
(0)
g+k E[SC ] < 0,

so β̂k is biased toward zero: it underestimates τg(k).

• Case 2 (negative spillover onto controls ⇒ overestimate).

Example: Adoption pulls attention away from not-yet-treated authors (e.g., referees or read-

ers penalize older approaches), depressing their outcomes and widening the treated–control

gap.

Or: If θ
(0)
g+k < 0 and E[SC ] > 0 (controls are hurt), then

Bgk ≈ − θ
(0)
g+k E[SC ] > 0,

so β̂k is biased upward: it overestimates τg(k).

At this point, I cannot yet determine if these effects are substantial or which one potentially
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dominates, so estimates should be discounted accordingly. Note: Field–year fixed effects absorb

shocks common to all authors in a subfield–year, but they do not remove differential exposure

within that cell.

4. Heterogeneity. When I split authors by pre-treatment heterogeneity group Qi of a given

outcome (computed only from pre-adoption years), the SA paths are estimated separately within

each group. Interpretation of β̂
(q)
k requires the same parallel-trends logic to hold within group

q. Differences across groups then reflect genuine effect heterogeneity present already before

adoption, rather than sorting on post-treatment dynamics.

5. Normalization and Fixed Effects. Coefficients are normalized so that β̂−1 = 0. The Main

specification includes year FE (µt), while the Strict specification includes subfield-by-year FE

(µℓt), absorbing common shocks at the corresponding aggregation.
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C.2 Event study summary statistics

Table C1: Summary statistics for event study analysis
Panel A: Sample structure

Main: Year–FE Mean Median Min Max p90 p99 N
Years — — 1993 2015 — — 23
Authors per year 1004.870 1048.000 441 1,470 1,450 1,470 23
Treated share per year 0.359 0.298 0.005 1.000 0.773 0.975 23

Strict: Subfield × Year FE Mean Median Min Max p90 p99 N
Years — — 1993 2015 — — 23
Authors per subfield–year 14.697 6.000 1 210 37 134 1,411
Treated share per subfield–year 0.596 0.571 0.000 1.000 1.000 1.000 1,411

Panel B: Descriptive statistics

Year–FE Subfield × Year FE
Variable Mean SD p10 p90 Mean SD p10 p90
Citations (z, c5) 0.549 0.868 -0.234 1.733 0.565 0.874 -0.225 1.759
Citations (z, c10) 0.474 0.836 -0.245 1.613 0.508 0.857 -0.234 1.680
Hit (10y) 0.338 0.375 0.000 1.000 0.345 0.378 0.000 1.000
Top-5 share 0.036 0.158 0.000 0.000 0.037 0.160 0.000 0.000

Table C2: Treatment cohorts by adoption year — Year FE and Subfield × Year FE

Year FE sample Subfield × Year FE sample
Adoption
Cohort
Year Treated Share

(%)
Cum. Cum.

share
(%)

Total Treated Share
(%)

Cum. Cum.
share

(%)

Total

1993 2 0.1 2 0.1 3,284 2 0.1 2 0.1 3,260
1994 5 0.2 7 0.2 3,284 4 0.1 6 0.2 3,260
1995 24 0.7 31 0.9 3,284 22 0.7 28 0.9 3,260
1996 25 0.8 56 1.7 3,284 25 0.8 53 1.6 3,260
1997 38 1.2 94 2.9 3,284 37 1.1 90 2.8 3,260
1998 45 1.4 139 4.2 3,284 44 1.3 134 4.1 3,260
1999 70 2.1 209 6.4 3,284 70 2.1 204 6.3 3,260
2000 73 2.2 282 8.6 3,284 73 2.2 277 8.5 3,260
2001 75 2.3 357 10.9 3,284 73 2.2 350 10.7 3,260
2002 76 2.3 433 13.2 3,284 74 2.3 424 13.0 3,260
2003 108 3.3 541 16.5 3,284 105 3.2 529 16.2 3,260
2004 119 3.6 660 20.1 3,284 119 3.7 648 19.9 3,260
2005 91 2.8 751 22.9 3,284 88 2.7 736 22.6 3,260
2006 156 4.8 907 27.6 3,284 156 4.8 892 27.4 3,260
2007 156 4.8 1,063 32.4 3,284 156 4.8 1,048 32.1 3,260
2008 187 5.7 1,250 38.1 3,284 187 5.7 1,235 37.9 3,260
2009 215 6.5 1,465 44.6 3,284 211 6.5 1,446 44.4 3,260
2010 215 6.5 1,680 51.2 3,284 215 6.6 1,661 51.0 3,260
2011 316 9.6 1,996 60.8 3,284 316 9.7 1,977 60.6 3,260
2012 273 8.3 2,269 69.1 3,284 272 8.3 2,249 69.0 3,260
2013 320 9.7 2,589 78.8 3,284 317 9.7 2,566 78.7 3,260
2014 332 10.1 2,921 88.9 3,284 331 10.2 2,897 88.9 3,260
2015 363 11.1 3,284 100.0 3,284 363 11.1 3,260 100.0 3,260
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Figure C1: Newly adopting authors each year, where adoption is citing a seed paper. Each adoption year
comprises a distinct cohort used in the staggered event study estimates. N = 3, 284.

Figure C2: Cumulative adopters over time, where adoption is citing a seed paper. N = 3, 284.
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Table C3: Risk support (left) and estimation support (right) by event time k (NYT-only, main-seed authors)
Panel A: Risk (NYT, Year–FE)

k Rows Mass@k Risk@(-1) Cohorts Min cohort Max cohort
-5 7,292 7,292 1,516 18 1998 2015
-4 1,161 1,161 1,533 19 1997 2015
-3 1,274 1,274 1,552 20 1996 2015
-2 1,368 1,368 1,569 21 1995 2015
-1 1,572 1,572 1,572 22 1994 2015
0 2,262 2,262 1,572 23 1993 2015
1 1,299 1,299 1,408 21 1994 2014
2 1,117 1,117 1,249 21 1993 2013
3 955 955 1,094 20 1993 2012
4 869 869 953 19 1993 2011
5 689 689 800 18 1993 2010
6 601 601 702 17 1993 2009
7 484 484 597 16 1993 2008
8 420 420 503 15 1993 2007
9 344 344 428 13 1994 2006

10 1,405 1,405 364 12 1994 2005
Panel B: Risk (NYT, Subfield × Year FE)

k Rows Mass@k Risk@(-1) Cohorts Min cohort Max cohort
-5 5,362 5,362 1,451 18 1998 2015
-4 1,042 1,042 1,460 19 1997 2015
-3 1,173 1,173 1,470 20 1996 2015
-2 1,252 1,252 1,470 20 1996 2015
-1 1,476 1,476 1,476 21 1995 2015
0 2,258 2,258 1,476 23 1993 2015
1 1,294 1,294 1,315 21 1994 2014
2 1,117 1,117 1,161 21 1993 2013
3 954 954 1,009 20 1993 2012
4 869 869 871 19 1993 2011
5 688 688 718 18 1993 2010
6 601 601 622 17 1993 2009
7 484 484 519 16 1993 2008
8 419 419 428 15 1993 2007
9 344 344 358 13 1994 2006

10 1,404 1,404 295 12 1994 2005

Panel C: Estimation (NYT, Year–FE)
k Contrib. cohorts Mass@k Risk@(-1) Effective cohorts Min cohort Max cohort

-5 18 7,292 1,516 17.0 1998 2015
-4 19 1,161 1,533 13.7 1997 2015
-3 20 1,274 1,552 13.9 1996 2015
-2 21 1,368 1,569 14.3 1995 2015
-1 22 1,572 1,572 14.4 1994 2015
0 22 2,260 1,572 14.1 1994 2015
1 21 1,299 1,408 13.4 1994 2014
2 20 1,116 1,249 12.7 1994 2013
3 19 954 1,094 12.8 1994 2012
4 18 868 953 12.1 1994 2011
5 17 688 800 11.8 1994 2010
6 16 600 702 11.1 1994 2009
7 15 483 597 10.7 1994 2008
8 14 419 503 10.8 1994 2007
9 13 344 428 10.0 1994 2006

10 12 1,405 364 7.4 1994 2005
Panel D: Estimation (NYT, Subfield × Year FE)

k Contrib. cohorts Mass@k Risk@(-1) Effective cohorts Min cohort Max cohort
-5 18 5,362 1,451 15.1 1998 2015
-4 19 1,042 1,460 12.3 1997 2015
-3 20 1,173 1,470 12.9 1996 2015
-2 20 1,252 1,470 13.1 1996 2015
-1 21 1,476 1,476 13.4 1995 2015
0 21 2,253 1,476 14.1 1995 2015
1 20 1,291 1,315 13.4 1995 2014
2 19 1,113 1,161 12.6 1995 2013
3 18 950 1,009 12.7 1995 2012
4 17 866 871 12.1 1995 2011
5 16 684 718 11.7 1995 2010
6 15 596 622 11.0 1995 2009
7 14 480 519 10.6 1995 2008
8 13 415 428 10.6 1995 2007
9 12 341 358 9.8 1995 2006

10 11 1,401 295 7.4 1995 2005

Notes: Risk panels (left): Rows are author–year observations at event time k. Mass@k is the identification mass at k (controls for leads k < 0, treated for lags k ≥ 0).
Risk@(-1) is the number of control rows at k = −1 for the same cohorts that appear at k. Cohorts counts distinct cohort years at k (Min/Max are their bounds).
Estimation panels (right): Contrib. cohorts appear at k and have nonzero control mass at k = −1; only these cohorts are used. Effective cohorts = 1/

∑
g

w2
g , with

wg proportional to the identification mass at k (controls for leads, treated for lags) and normalized to sum to one across contributing cohorts.
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