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Abstract

Where ideas are difficult to test directly, does the scientific community rely more
on prestige markers to evaluate them? In this paper, I adopt the cultural evolutionary
concept of “prestige,” translate it into economics through a simple reputation model, and
propose this hypothesis of a prestige-testability tradeoff: scientific fields that are less testable
rely more on prestige markers, manifesting a higher concentration. I present empirical
evidence of this prestige-testability tradeoff in two ways. Firstly, in bibliographic data of
the corpus of scientific research from 1900 to 2015, I find that the concentration of author
prestige markers—citations and h-indexes—is consistently negatively associated with a
straightforward measure of testability—the incidence of the word “test” in the titles—across
nineteen fields and across subfields within each field. Secondly, I use the occurrence of a
paradigm shift toward more testability in the mid-1990s as an event study: the “credibility
revolution” in microeconomics. Though not truly exogenous, this paradigm shift reflects a
testability shock that is suitably uncovered by a staggered event-study design. I find that the
credibility revolution administers a leveling effect on its adopters, based on various citation
metrics and share of papers in top-five journals: authors below-median pre-adoption on
these prestige markers see clear and persistent increases in their prestige markers, while their
above-median peers do not, which I interpret as evidence for the prestige-testability tradeoff.
I argue that this prestige-testability tradeoff framework is an important lens for viewing the
organization of science, an important factor in a number of science policy decisions, and

likely a feature of other social learning environments.
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The beauty of poetry is a matter of such nicety, that a young beginner can scarce
ever be certain that he has attained it. Nothing delights him so much, therefore, as
the favourable judgments of his friends and of the public; and nothing mortifies him
so severely as the contrary... Mathematicians, on the contrary, who may have the
most perfect assurance, both of the truth and of the importance of their discoveries,
are frequently very indifferent about the reception which they may meet with from
the public.

Adam Smith (1759, 123-124)

1 Introduction

Economists have long had an interest in the industry of science as a source of economic growth, an
existence proof of public goods provision, and an interesting case of labor markets, reward structures,
and human capital development (Stephan 1996; Mokyr 2016). But the primary currency in the market
place of ideas is prestige, not dollars, euros, or yen.

As defined in cultural evolutionary theory, prestige is voluntarily awarded status, followers freely
choosing a leader (Henrich and Gil-White 2001). By deferring to and learning from a prestigious role
model, a group can transmit information with high-fidelity; this has been shown to lead to group-level
adaptive advantages in a variety of settings (Henrich et al. 2015; Henrich 2016). T argue that the
industry of science serves as a prototypical example of a domain of social learning organized by prestige
and ripe for study. Firstly, the industry is built around the growth of knowledge: researchers present
ideas, hypotheses, methods, and tools, and other researchers freely choose to award them status.
Secondly, the output of the industry is well recorded in journals and books. Thirdly, the custom of
referencing other research via formal and voluntary citation provides a transparent measure of prestige
and a natural entry point for observational study. Prestige, as the currency of science, buys a researcher
the right to spread their ideas.

Using prestige as an organizing principle in science comes with a number of benefits and costs.
On the one hand, science is built by standing on the shoulders of giants: by copying the path of the
previously successful, a new researcher advances faster to the knowledge frontier where she can spend
her resources building the cumulative stock of knowledge. On the other hand, relying too much on
prestige markers can lead to socially wasteful status games, slowing the expansion of the knowledge

frontier.! With a premium on novelty and priority, researchers compete for fixed prestige rents and

1Some of these costs are the result of “prestige bias” as studied in the literature on psychology and cultural evolution
(Jiménez and Mesoudi 2019; Egozi and Ram 2024).



race for discovery (Merton 1957; 1961; Hill and Stein 2025a; 2025b).

But the level of prestige deference in science does not exist in a vacuum. My central argument
is that the testability of the subject of study affects how much the field comes to rely on prestige,
and in turn the organizational structure of the field. I propose the following simple hypothesis: this
relationship is negative. Scientific fields that are less testable rely more on prestige markers and thus
exhibit a higher concentration of prestige markers.

Note that I am making no claims about the desirability of prestige deference in any given case;
I claim it is a function of the kind of knowledge being produced in a given field. Again, prestige
deference comes with both benefits and costs, as Adam Smith (1759, 123) recognizes, presented in the
epigraph above. So to use his example: poetry and mathematics are both valuable fields of knowledge,
but the kinds of knowledge are different and thus the fields differ in their organization and how much
they depend on the opinion of their peers.

Prestige is closely related to the economic concept of reputation, used to describe a consumer’s
assessment of the quality of a seller (Kreps and Wilson 1982; Shapiro 1983; Klein 1997). These terms
differ in that prestige is awarded by one’s peers, while reputation is awarded by the other side of the
market. However, in the case where sellers are also buyers (like researchers in the industry of science)
these two concepts overlap. With this motivation, in Section 2 I take the concept of prestige and
translate it into economics in a simple reputation model, and I also introduce the concept of testability
as a variation in the delay until the quality of a good is revealed. A perfectly testable good is akin to a
search good, while a less testable good is akin to an experience or credence good (Nelson 1970; Darby
and Karni 1973). The punchline of the model is the following: in order to meet the participation
constraint, buyers require less certainty about seller reputation (or prestige markers) if the quality of
the good is revealed earlier in time. Consequently, in markets with longer-lived quality uncertainty, the
threshold level of seller reputation is higher, leaving a higher concentration of reputation (or prestige
markers). By interpreting the model’s parameters in the context of science, this serves as a grounding
for my hypothesis of the prestige-testability tradeoff.

I test my hypothesis with two methods. Firstly, to get a sense of the universe of the industry of
science for the past century, I look at a range of nineteen scientific fields and their subfields (twelve
each) from 1900 to 2015, and I use OLS to elicit the association between the concentration of prestige
markers and testability. More specifically, for each field and subfield in each year, I calculate the

Herfindahl-Hirschman index (HHI) of (a) author citations, (b) paper citations, and (c) author h-index



(each log-ed for interpret-ability). I then regress these on “testability”, measured simply as the incidence
of the string “ test” (space included) in paper names, normalized to a percentile gradient. I find
the concentration of prestige markers is consistently negativity associated with testability, among the
nineteen fields and among the subfields in each field. See Section 3 for details on the regression analysis.

Secondly, and more narrowly, I ask: does a testability shock in a specific field change the dynamics
of prestige deference? To answer this question, I study the case of a paradigm shift toward more
testability: the “credibility revolution” in microeconomics beginning in the mid-1990s. Specifically, I
use a staggered event study design to assess the effects on 3,284 authors who adopt the new paradigm,
using not-yet-adopters as the comparison group.

As expected for any successful paradigm shift, authors gain prestige post adoption (Kuhn 1962).
But importantly for my question, authors with lower prestige before adoption see bigger effects. That
is, I find that the credibility revolution administers a leveling effect on its adopters, based on five-year
citations, ten-year citations, likelihood of scoring a “hit” paper, and share of papers in top-five journals:
authors below-median pre-adoption on these prestige markers see clear and persistent increases in their
prestige markers, while their above-median peers do not. While not truly exogenous, the event study
design aptly reveals the dynamics of a paradigm shift as a shock to the scientific field.? Indeed I
hesitate to claim strong causal status of any of my estimates but rather focus on the heterogeneity
among the observed effects.?

Related Literature. Along with the literature on prestige and reputation, this paper contributes to
the growing literature on the economics of science, beginning with Smith (1759), reignited by Nelson
(1959) and Arrow (1962), and summarized by Stephan (1996). Polanyi (1962) and Tullock (1966) model
the scientific enterprise as a set of rules by which researchers interact, jointly building the broader
organization of science—these I take as influential in my model. Regarding prestige in science (more
loosely defined), the literature has noticed the inequality in influence since at least Robert Merton
(1968), who famously calls this the Matthew Effect: “the rich get richer, the poor get poorer.” In
economics, this inequality is often called a winner-take-all market (when the mechanism is supply-side:
Cook and Frank 2010; 2013) or a positional good (when the mechanism is demand-side: Carlsson
et al. 2007; Schneider 2007). Regarding my methods, many recent papers tackle economic questions

in science through the use of bibliographic data, and from these I draw inspiration (Wu et al. 2019;

2See Azoulay et al. (2019) who look at the shock of an unexpected death of a star researcher for a similar difference-
in-differences empirical design.
3See Appendix C.1 for discussion about appropriate causal interpretations.



Azoulay et al. 2019; Angrist et al. 2020; Liu et al. 2023; Hager et al. 2024; Hill and Stein 2025a; 2025b;
Hill et al. 2025; Tripodi et al. 2025). Finally, Huber et al. (2022) ask a question closely related to my
hypothesis: does the prestige of the listed author names affect peer-review feedback? The authors ran
a preregistered field experiment soliciting 534 peer reviews on a finance paper while only listing either
economics Nobel Laureate Vernon Smith or his (relatively unknown) coauthor Sabiou Inoua; they find
significantly lower rejection rates and better comments across the board with the name of the Nobel
listed instead of the novice.

This paper combines the narrowly economic approach with the approach of the cross-disciplinary
“science of science” papers: that is, I propose a model-grounded hypothesis and test it using the micro-
econometric toolkit, while the research question explicitly compares characteristics across scientific
fields. My unique contribution is twofold: first, it is to translate the concept of prestige into the
language of economics through reputation, and second, it is to use this to examine the organization of
science based on two substitutable methods of learning. I aim to uncover one aspect of the scientific
“rules of the game,” and if I am successful, this has the potential to inform downstream questions about
incentive structures, evaluation funding, and allocation of researchers.

Data. The data used for all analyses in this paper are from SciSciNet (Lin et al. 2023) a large-scale
relational data lake of scientific contributions, authors, outlets, and institutions. SciSciNet builds on
Microsoft Academic Graph (Sinha et al. 2015; Wang et al. 2019; Wang et al. 2020) and OpenAlex
(Priem et al. 2022) and has become a standard for open and transparent research on the science of
science. I limit my analyses to the years 1900 to 2015. See Appendix B for relevant summary statistics.

The paper proceeds as follows: I present the model in Section 2, conduct the wide-scale regression
analysis in Section 3, conduct the paradigm shift event study in Section 4 and conclude with a discussion

in Section 5.

2 A Model of Prestige-Testability Tradeoff

2.1 General model

Let us begin with a simple reputation model. Suppose there are two markets A and B that are
independent and are identical except for one distinguishing feature, a delay in quality revelation. At
time t = 0, the good is produced and sold in both markets. The quality of good X 4 is revealed at

time ¢t = 1 as either high or low (h or 1), but the quality of good Xp is revealed at time ¢t = 2.



For simplicity, buyers are only interested in buying the high-quality good Xih at price p”, but there
is some chance the seller cheats and that they are sold a low-quality good at the high-quality price. If
a seller cheats, this imposes a per-period penalty ¢ on the buyer for every period he holds the good.
That is, in market A, when the buyer finds out he bought a low quality good at time ¢ = 1, he incurs
cqg = ¢ > 0. In market B, when the buyer finds out he bought a low quality good at time ¢ = 2, he
incurs cg = ¢+ fec = ¢(1 + ) where § € [0,1] is the one-period discount factor.

Finally, let o denote the buyer’s belief that a given seller will not cheat on the next sale. This can
(but needn’t) be imputed from past play: if the buyer observes the fraction of times each firm has
cheated in the past 1 — «, and thus infers that an X is truly high quality with probability a € [0, 1].

The expected utility of a buyer in market ¢ is thus

Ui(i) = ai(v = p") + (1 — o) [=¢; = p"], (1)
where v is the value he derives.

The buyer’s participation constraint is thus U;(a;) > 0 :

ai(v—p") + (1 —a)[—c; —p"] > 0. (2)

Solve for ay:

> ¢+ pt _atr 3)
Tw-p)H(atpt) v—e

Since the cost of being cheated in market B carries over into two periods, ca < cp, and thus

o < aj. Or, more specifically,

L_ctpt _c4B)+p" .
_ _ 4
aa U—c<v—c(1+6) B )

This has the following intuitive interpretation:
Proposition 1. Consumers require more quality assurance in a market with longer-lived quality

uncertainty.

In other words, a market where a good’s quality remains uncertain for longer will rely more on
reputation (in this case past performance). We can generalize this based on variations in the discount
factor 8 and delay in quality revelation. For the myopic buyer with 8 = 0, ¢(1 + 8) = ¢ and thus
oy = op; reputation does not matter for him. For a new market j where the quality is revealed after
time t =7 > 2, ¢; = ¢(1 + 8)7, making the reliance on reputation stronger.

Where «; corresponds to a seller’s reputation &; € [0, 1] as the past non-cheat-rate, markets A

and B can be compared directly on concentration of &;. Assume the baseline CDF for the sellers’



reputations is G(z), and buyers screen using cutoffs oy and o with &% < &5 by Inequality 4. The

distribution of reputations among active sellers in market 4 is the conditional CDF

Gi(x)EPr(&§x|dZaf):w (x> af). (5)
Because G is nondecreasing and a% < aj, it follows that
Gp(zr) < Ga(z) (6)

for all z, and with strict inequality on [a%, 1) when G(z) < 1 (proof in Appendix A). Thus the active
reputation distribution in B first-order stochastically dominates that in A: slower revelation raises the
participation cutoff and truncates the active pool to the right, leaving only higher-reputation sellers.
This leads to the straightforward relationship between length of uncertainty, reliance on reputation,
and equilibrium of reputation-level concentration based on the participation constraint:

Proposition 2. When consumers’ quality assurance beliefs correspond with past seller performance
through a reputation marker, markets with longer-lived quality uncertainty show greater concentration

of reputation markers.

2.2 The model in research production

In the context of scientific research production, Proposition 1 can be restated as follows:
Proposition 3. Science evaluators require more quality assurance in a scientific field with longer-lived

quality uncertainty.

Fields that produce ideas that are more testable reduce the quality revelation time, and thus we should

expect these fields to rely less on the the reputation of the researcher in the evaluation of the ideas.
Likewise, Proposition 2 can be restated as follows:

Proposition 4. When science evaluators’ quality assurance beliefs correspond with past researcher

performance through a reputation marker, fields with longer-lived quality assurance show greater

concentration of reputation markers.

For completeness, let us interpret each parameter in the domain of scientific production. The
good is an article, book, or otherwise one unit of scientific output; the producing firm is the author(s)
of the work; the buyer is the scientific community. Reputation based on success in the past can be

directly interpreted as prestige.* Past citations accrued to an author is thus a natural, albeit imperfect,

4Reputation based on an extra-market signal would not be a measure of prestige, conventionally defined (Henrich
and Gil-White 2001).



measure of prestige.” Other measures such as productivity, h-index, or institution ranking are also
natural proxies, but note that while prestige is a powerful mechanism, it is a nebulous term, and is
best defined in context.

In practice, the value v placed on a unit of output, the price p*, and even the cost ¢ of holding a
low quality good may all vary across scientific fields, corroborating our ability to directly compare
prestige-reliance and concentrations across fields. For example, a new output in chemistry (say a drug)
may be more valuable than a new output in history (v4 > vg), the price the community is willing to
pay may reflect this (p, > p/4), and we may suffer less from a mistaken historical account than from
an inappropriately prescribed drug (cg < ca).

Notice in Inequality 3, however, that as the limit of (v — p") — 0, a — 1. This means that with no
consumer surplus, the buyer must be certain he is receiving a high quality good and will only buy
from a firm with no past low quality output. While it is logically possible that there is more consumer
surplus per unit in certain fields of science, there is no a apriori reason to expect this to be connected
with testability nor consistent over time. To make the general model more tractable for science, we
can assume that the price paid and value received are non-monetary for the buyer—whether or not
the community approves of a new idea is constant in shadow price across disciplines. This matches the
common sentiment and empirical findings that the production of specific scientific inquiry is largely
independent of financial incentives (Stern 2004; Myers 2020).

To summarize the model, the scientific community accepts or rejects ideas from researchers based
on expected utility, which is a function of a researcher reputation belief and the costs of adopting a
low-quality idea. In other words, there is some combination of researcher prestige and idea testability
that together allow the community to accept the idea; those attributes are substitutes in consumption.
In fields that are less testable—fields where ideas have longer-lived quality uncertainty—a higher
reputation threshold is necessary to satisfy the participation constraint, and this mechanically leads
to greater concentration of prestige markers. With the above qualifications, this grounds my simple

hypothesis of a prestige-testability tradeoff in science.

5Unlike in Shapiro (1983), researcher reputation cannot be transferred—it expires with death. This gives the
straightforward prediction that researchers will “cash in” on their reputation and produce less testable research as they
reach some age threshold. I leave this for further research.



3 Regression analysis

My first empirical test takes the widest possible lens. Namely, I look for an association between the
testability of a field of study and the concentration of its prestige markers. To this end, I adopt the
universe of bibliographic data from nineteen scientific fields from 1900 to 2015 from SciSciNet (Lin et al.
2023).% This gives me 149,967,677 distinct authors and 74,013,927 contributions published as journal
articles (for full summary statistics broken down by field, see Appendix B). For these associative
estimates, I use the following three measures as prestige markers: author citations, author h-index,
and paper citations. Because these are voluntarily awarded by the scientific community, I expect this
to capture a realistic portrait of the prestige hierarchies, even if imperfect.

In the first series of OLS regressions I take the scientific field in each year as the unit of analysis,
testability as the independent variable, with the concentration (HHI) of the three prestige measures as
the dependent variables.

log HHI;; = a + B Testability ; , + Xy + A + €5t (7)
where f is field, ¢ is year, X is controls, and A is year fixed effects. In the second series of OLS

regressions, I repeat the procedure, but take the scientific subfield in each year as the unit of analysis
and examine variation within the fields by adding p as a field fixed effect.
log HHI, ; = o + B Testability, , + X ¢y + pp + A + €5t (8)
The coeflicient of interest is 8, which I hypothesize to be negative. Table 1 presents a description
of each of unit and variable including controls, and Table B1 presents summary statistics, and Table
2 presents results. Across all regressions for fields and subfields, the coefficient of interest is indeed
negative. As an interpretation of a typical coefficient: a 10 percentile increase in testability across
fields is associated with a 6.85% decrease in the concentration of Author Citations, holding year fixed
(Table 2, Panel A, column 3), or a 10 percentile increase in testability across subfields is associated
with an 10.15% decrease in the concentration of Author H-index, holding year and field fixed (Table 2,
Panel B, column 6). Figure 1 shows the testability gradient mapped on to Author Citation HHI; this

corresponds to the first column in Table 2, Panel A, though it is not the regression proper.

6Each paper is assigned one of these nineteen "top" fields in SciSciNet: Art, Biology, Business, Chemistry, Computer
science, Economics, Engineering, Environmental science, Geography, Geology, History, Materials science, Mathematics,
Medicine, Philosophy, Physics, Political science, Psychology, Sociology.



Table 1: Variables and Definitions for OLS Analysis

Item Type Definition

Field Unit for 1.1-1.9  Unique top fieldid (19 total), assigned by SciSciNet.

Subfield Unit for 2.1-2.9  Unique sub fieldid mapped to a top field using the 12
most common per year.

Testability Independent Percent incidence of the string “ test” (with leading space)
in titles in each unit—year (random 10% sample for fields
and subfields), normalized to a percentile.

Paper-citation HHI =~ Dependent Herfindahl-Hirschman Index over all paper citations in
the unit—year. Logged for interpretation.

Author citation HHI ~Dependent Herfindahl-Hirschman Index over all author citations in
the unit—year. Logged for interpretation.

Author h-index HHI ~ Dependent Herfindahl-Hirschman Index over all lifetime h-indexes for
authors active in the unit—year. Logged for interpretation.

Team size Control Median team size calculated over unit-year.

# Active authors Control Number of active authors calculated over unit-year.

Note. See Table Bl in Appendix B for summary statistics.

Table 2: OLS Results: Testability on Concentration of Prestige Markers

Panel A: Fields
log Author-Cite HHI

) (2) ®3)

Dependent variable:
log Author H-index HHI

(4) (5) (6)

log Paper Cite HHI
(7) (8) (9)

Testability (percentile) —1.003*** —0.691*** —0.685*** —

0.941*** —0.658*** —0.646***

—0.811%** —0.548*** —0.540***

(0.111) (0.091) (0.091) (0.086) (0.064) (0.064) (0.104) (0.089) (0.089)

Team Size —1.520%** —1.427*** —1.377F**F —1.177*** —1.278%** —1.143***
(0.047) (0.064) (0.033) (0.044) (0.046) (0.062)

# Active Authors —0.000** —0.000*** —0.000***
(0.000) (0.000) (0.000)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 2,204 2,204 2,204 2,204 2,204 2,204 2,204 2,204 2,204
R2 0.643 0.762 0.762 0.784 0.882 0.884 0.628 0.729 0.730
Adjusted R2 0.623 0.748 0.749 0.772 0.875 0.878 0.608 0.713 0.715

Panel B: Subfields
log Author-Cite HHI

(1) (2) ®3)

Dependent variable:
log Author Hindex HHI

(4) () (6)

log Paper Cite HHI

(7) (8) (9)

Testability (percentile) —0.984*** —0.848*** —(0.852*** —1.145*** —1.003*** —1.015*** —0.832*** —(0.740*** —0.747***

(0.031) (0.029) (0.029) (0.027) (0.025) (0.025) (0.029) (0.028) (0.028)

Team Size —0.612*** —0.595*** —0.635%** —0.574*** —0.413*** —0.379***
(0.011) (0.012) (0.009) (0.011) (0.011) (0.012)

# Active Authors —0.000*** —0.000*** —0.000***
(0.000) (0.000) (0.000)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Field FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 24,899 24,899 24,899 25,054 25,054 25,054 24,899 24,899 24,899
R2 0.833 0.852 0.853 0.887 0.905 0.906 0.807 0.818 0.818
Adjusted R2 0.832 0.852 0.852 0.886 0.904 0.905 0.806 0.817 0.817

Note. There is a negative association between testability and these three prestige *p < 0.1, **p < 0.05, ***p < 0.01
markers, across the nineteen fields, and across subfields, holding fields fixed.
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Author-citation Concentration and Testability by Field
1.0000

Fields

Philosophy

Art

History
Mathematics
Computer science
Political science
Economics
Business
Geography
Sociology

Physics
Environmental science
Geology
Engineering
Medicine
Psychology
Biology

Materials science
Chemistry

0.0100

Author Citation HHI (log scale)

0.0001

Testability (percentile)
T
0% 25% 50% 75%100%

19001905191019151920192519301935 19401945 195019551960 1965197019751980 198519901995 2000200520102015
Year

Figure 1: Author-citation Concentration and Testability. Note: The prestige-testability tradeoff hypothesis says that there should be lower
testability (dark) where there is higher concentration of prestige markers (top), but note that all regressions reported in Table 2 include year
fixed effects. Testability is measured as the incidence of the string “ test” (space included) in titles among the fields, and factored as percentile.

. 2
HHI is calculated as hhify =Y -, (%) , where f is a field, t is a year, ¢ is an individual author who publishes a contribution in that

field-year, n is total active authors in that field-year. Number of field-years = 2204. The order of fields in the key is ranking in last observed
year (2015).



4 Paradigm Shift Event Study

Edward Leamer (1983) famously wrote the following in a paper entitled “Let’s Take the Con out of
Econometrics”: “Hardly anyone takes data analyses seriously. Or perhaps more accurately, hardly
anyone takes anyone else’s data analyses seriously. Like elaborately plumed birds who have long since
lost the ability to procreate but not the desire, we preen and strut and display our t-values.” In
2010, Joshua Angrist and Jorn-Steffen Pishke (2010, 3-4) reflect: “[Leamer’s| critique had a refreshing
emperor’s-new-clothes earthiness that we savored on first reading and still enjoy today. But we're
happy to report that Leamer’s complaint that ‘hardly anyone takes anyone else’s data analysis seriously’
no longer seems justified. Empirical microeconomics has experienced a credibility revolution, with
a consequent increase in policy relevance and scientific impact.” In 2021, Angrist was awarded the
Nobel Prize in Economics with David Card and Guido Imbens for their contributions that sparked
this “credibility revolution” in empirical economics; their main contributions were developed in the
early- and mid-1990s.

The credibility revolution is a clear example of a scientific paradigm that aims to shift a field
toward “testability.” For the sake of this paper, I am agnostic to the metaphysical truth claims of
any given study, within the credibility revolution or otherwise. But it is not my interpretation that
matters: as long as the new scientific practices revolutionized the ability for practitioners to “take
anyone else’s data analyses seriously,” we have a genuine shift in the testability parameter.”

Here I take on the task of parsing out the effect that this paradigm shift had on prestige of its
participants. That is, I am interested on the effects of researchers who select into the credibility
revolution. With any successful paradigm shift, testability-related or otherwise, we would expect the
participants to gain prestige. But if my testability-prestige tradeoff hypothesis holds, we should expect
the strongest effects for those who did not have prestige prior to their participation in a “more” testable
subject matter. Intuitively a shift toward testability can lift up the previously unrecognized—the
quality of the output is revealed much sooner.

To approach my measurement, I adopt a staggered event study design. The pool of researchers is
3,284 authors who publish a paper that cites a set of five “credibility revolution” seed papers: Angrist
and Imbens (1994), Card and Krueger (1994), Bound et al. (1995), Angrist et al. (1996), and Staiger

and Stock (1997) (see Appendix C.2 for summary statistics). I take an author’s first publication

"In terms of my model in Section 2 this is a shift from a later quality revelation time to an earlier quality revelation
time.
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that cites a seed paper as the method of treatment, and once a researcher is treated they remain
forever treated. While this is perhaps not the tightest possible definition of joining the credibility
revolution—an author could critically cite a seed paper—I use this method for transparency and to be
consistent in using citations as a measure of prestige-deference. This setup fits nicely into the event
study method proposed by Sun and Abraham (2021): it reflects staggered treatment and we certainly

expect heterogeneous treatment effects. The main specification is as follows:

Yit = Z Br (Zl{Ci—g}l{tg—k}> + pe + €,

keZ\{—1} 9€g

Sun—Abraham cohort X event-time dummies
where outcomes and variables are defined in Table 3. Note that this is built from a simple 2 x 2
difference-in-differences design. At its core, the goal is to compare authors who adopt the new
“testability” regime to their potential outcome had they not adopted the regime, and then ultimately
how this “treatment effect” varies among the kinds of authors who participate (see Appendix C.1 for
a full interpretation based on potential outcome notation). Because the sample is restricted to only
authors who eventually adopt the new paradigm, the source of variation is the timing of adoption.

Along with this main specification I also estimate a “strict” version where I introduce subfield
level fixed effects (along with year) pf¢; ;. Finally, I investigate the heterogeneity by below and above
median pre-adoption prestige.® While the actual outcomes of adopting authors may be interesting in
its own right, this heterogeneity is the relevant test of my hypothesis.

Results. The main event study paths are presented in Figure 2 and the event study paths broken
down by pre-treatment heterogeneity are presented in Figure 3. In the aggregate, there is a modest
increase in all outcomes post adoption. Figure 2, A shows that post-treatment, cohorts receive between
about 0.1 to 0.2 standard deviations more citations within five years of publishing their papers,
compared to the estimated counterfactual of the not-yet-treated; this effect persists over the decade
post treatment. Similarly, Figure 2, B shows an increase in about 0.1 to 0.3 standard deviations more
citations within 10 years of publication, compared to the counterfactual. Figure 2, C shows that
treated cohorts are about 3% to 8% more likely to have a “hit” paper in their field, defined as being in
the top 10 % of papers in lifetime citations. Figure 2, D shows that treated cohorts publish Top-5

papers 1% to 3% more than the control group, though this effect vanishes with subfield controls. For

SO yit = o1y 8L (deg HCi=g}1{t—g= k}) + 49 4 oe, i€ Q,
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Table 3: Variables and Definitions for Event Study: Main: Strict, and Heterogeneity

Item Symbol Definition

Unit of observation  4,t Author 7 in calendar year t.

Treatment cohort C; First year ¢ publishes a paper that cites any of the five

(adoption year) seed papers (once treated, always treated).

Event time k=t—-C; Relative year to adoption; k = —1 is the omitted

(reference k = —1) (reference) period.

Outcomes Yit Field-normalized 5 year citations (c¢5_z),
field-normalized 10 year citations (c10_z), top 10 %
paper in the field by lifetime citations (hit10), top-5%
share (top5).

SA cohort x SAik Sun—Abraham (2021) basis:

event-time dummies SApr = Z 1{C; = g} 1{t — g = k}.

9€g

Interaction weight Bk Sun—Abraham interaction weight for cohort g at event
time k; event-time coefficients are aggregated as
Br = > geg, BaksTg(k) with > 5 Bgi =1 for each k.
This allows cohorts to contribute based on size without
negative weighting.

Main fixed effects e Calendar-year FE (absorbed).

Strict fixed effects (i), ¢ Subfield x year FE (absorbed), where s(i) maps
author ¢ to subfield-year handles.

Heterogeneity, Tre Author-specific pre-treatment years observed:

pre-period set TP ={t < C; : yir observed}.

Pre-treatment g Mean (or median) outcome over 7" used to rank

summary for authors prior to treatment for that outcome.

ranking

Heterogeneity group @Q; € {1,2} Two heterogeneity bins for median split of y™* among
not-yet-treated authors in the risk set.

Group indicator(s) D;q =1{Q; = q} Time-invariant dummies; interactions SA;, X Djq
allow the path to differ by pre-period heterogeneity.

Event study — Main/Strict: y;; = Z Br SAi + FE + €44

estimating k#A—1

equations
Heterogeneity:
it = BrSAun+ Y 0k SAixDiz + FE + 5.

k#—1 k#—1

Inference (clusters) — Two-way clustering by author and FE dimension (year
for Main; Subfield xyear for Strict).

Figure trimming k € [-15,15] For plots, event-time paths are trimmed to a

symmetric window where support is adequate.

each outcome, pre-trends are flat, except for a jump within 2-5 years of treatment, arguably due to
anticipatory behavior. Anticipation may be likely in this case, as papers take time to achieve final

publication, but here I present an unadjusted event-study for transparency.” These results, though

9See Appendix C for a full discussion of assumptions including around no-anticipation.
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Joining the '""Credibility Revolution'': Staggered Adoption Event Study

A: 5-Year Citations (o) B: 10-Year Citations (o)
N =21,418 : o6 N = 8,992

0.3

0.0

-0.3

-0.2
-0.6

C: Hit Paper Likelihood (A%) D: Share of Papers in Top-5 (A%)

N =21,418 N =21,418
H 5%

10%

-5%

-10%

-5%

-10 -5 0 5 10 -10 -5 0 5 10
Event time k (years)

~®- Year FE -4 Subfield x Year FE

Figure 2: Authors who cite credibility revolution seed papers see the following outcomes: Panel A 0.1 to 0.2
standard deviations increase in their 5-year citations, sustained for 10 years post adoption; Panel B 0.1 to 0.3
standard deviations increase in their 10-year citations, sustained for 10 years post adoption; Panel C 3% to
8% increase in their likelihood of achieving a “hit paper” (defined as a paper achieving lifetime citations in the
top decile of the field); Panel D a 2% to 3% increase in the share of their papers that make it into a Top-5
journal. Controlling for subfields, these effects are not all statistically significant. Staggered event study paths
are calculated using Sun and Abraham (2021) interaction weighted estimates; units are adoption-year cohorts,
reported N is author-years. Reference year is k = —1. See Appendix C.2 for summary statistics.

perhaps real, say little with respect to my prestige-testability hypothesis, however.

To shed light on the hypothesis of interest, I break the event study estimates down by the
heterogeneity of the outcomes of interest in the pre-treatment period. For this exercise, I calculate each
author’s average pre-treatment outcome and slit the sample on a simple binary below and above the
median. My hypothesis would imply that lower-prestige individuals benefit more from the testability
shock. Figure 3 give us visual credence.

Figure 3 shows that the low-baseline group consistently sees greater post adoption effect compared
to their high-baseline peers, and in many cases the the high-baseline group sees null or negative effects.

In particular, low-prestige authors see a 0.1 to 0.3 standard deviations increase in their 5-year citations,
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Joining the '""Credibility Revolution'': Staggered Adoption Event Study, Heterogeneity by Baseline

B: 10-Year Citations (o)

A: 5-Year Citations (o)

Low N = 9,215 : Low N = 4,091
High N = 11,535 : 0.6 High N = 4,760

0.4

0.3

-0.3

0.2

0.0 ---m=-g--1-

-0.2

-0.6

D: Share of Papers in Top-5 (A%)

C: Hit Paper Likelihood (A%)

Low N = 9,666

Low N = 16,656
High N = 11,084 i

High N = 4,095

10%

10%

0% ---

-10%

-20%

-20% :
-10 -5 0 5 10 -10 -5 0 5 10
Event time k (years)

&~ Low - Year FE -®- Low - Subfield x Year FE -4~ High - Year FE High - Subfield x Year FE

Figure 3: Unpacking by pre-adoption heterogeneity, the gains by joining the credibility revolution are notably
concentrated in the low-prestige authors. Specifically, authors who cite credibility revolution seed papers see the
following outcomes: Panel A low-prestige authors see a 0.1 to 0.3 standard deviations increase in their 5-year
citations, while their high-prestige peers see a change of —0.1 to 0.1 standard deviations, and this difference is
sustained for 10 years post adoption; Panel B low-prestige authors see a 0.1 to 0.4 standard deviations increase
in their 10-year citations, while their high-prestige peers see a change of —0.1 to 0.2 standard deviations, and
this difference is sustained for 5 years post adoption; Panel C low-prestige authors see a 12% to 19% increase
in their likelihood of achieving a “hit paper” (defined as a paper achieving lifetime citations in the top decile of
the field), while their high-prestige peers see a 1% to 7% decrease in their likelihood, and this difference is
sustained for 10 years post adoption; Panel D low-prestige authors see a 2% to 3% increase in the share of
their papers that make it into a Top-5 journal, while their high-prestige peers see a 1% to 10% decrease (note
that negative pre-trends for the high-prestige group indicates that their Top-5 share increased each year until
peaking at k = —1). Staggered event study paths are calculated using Sun and Abraham (2021) interaction
weighted estimates; units are adoption-year cohorts, reported N is author-years. Reference year is k = —1. See
Appendix C.2 for summary statistics.

while their high-prestige peers see a change of —0.1 to 0.1 standard deviations, and this difference
is sustained for 10 years post adoption; low-prestige authors see a 0.1 to 0.4 standard deviations
increase in their 10-year citations, while their high-prestige peers see a change of —0.1 to 0.2 standard
deviations, and this difference is sustained for 5 years post adoption; low-prestige authors see a 12%

)

to 19% increase in their likelihood of achieving a “hit paper,” while their high-prestige peers see a
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1% to 7% decrease in their likelihood, and this difference is sustained for 10 years post adoption; and
low-prestige authors see a 2% to 3% increase in the share of their papers that make it into a Top-5
journal, while their high-prestige peers see a 1% to 10% decrease (note that negative pre-trends for the
high-prestige group indicates that their Top-5 share increased each year until peaking at k = —1). I

interpret this leveling effect as support for the prestige-testability tradeoff.

5 Conclusion

“Standing on the shoulders of giants” is a necessary step for scientific progress. But, to extend the
metaphor, the need for giants is endogenous to the height of the tree of knowledge where the researcher
is looking for fruit. This has been my hypothesis. Or: the kind of knowledge in some fields lends
itself to be more testable than in others, and thus a variation of the need for prestige deference across
fields. This materializes into a higher concentration of prestige markers, which is consistent with the
wide-scale evidence I present in Section 3.

Furthermore, changes in the testability of a field can in turn affect the degree to which its prestige
hierarchy is maintained. I explore this using an event study design over the credibility revelation, a
paradigm shift in economics. I find that pre-adoption low-prestige researchers who opt in to the new
paradigm see consistently larger gains than their high-prestige peers. I take this leveling effect as
evidence of the prestige-testability tradeoff.

Note that my primary goal has been to elucidate an aspect of the structure of scientific inquiry, and
not to promote policy prescriptions. That said, if the hypothesis holds water, it may have implications

for other important questions in the organization of science. Here I discuss a few.

1. Reliance on prestige markers to evaluate researchers is not inherently good or bad. Indeed, when
the kind of knowledge being produced does not allow for quick and easy test, verification, or
falsification we still must find some way to evaluate ideas. In these cases prestige markers may

be as good as any.

2. It may be beneficial for society to promote more diversity of scientific ideas than ones that
appear through “normal” channels. After all, breakthrough scientific ideas can exhibit huge
positive spillover effects, and it has been shown that science, like other ventures, follows a
positive risk-reward path (Azoulay et al. 2011; Azoulay and Greenblatt 2025). On this front, the

framework from the prestige testability trade-off hypothesis implies different things for different
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fields. In the more testable fields and subfields, research evaluators should allow many more shots
on goal, reduce their reliance on prestige markers, and allow the scientific community to assess
the testable claims quickly. In less testable fields and subfields, research evaluators might have no
other choice than to rely on prestige markers for evaluation—that is okay, and it may be futile or
destructive to introduce testability criterion on a subject matter that does not warrant it. But it
does not follow that evaluators should be limited to judgment based only on publication numbers,
citations, or institutional rankings. Prizes and tournaments could reward prestige while reducing

the “time to build” reputation, increasing diversity of ideas and turnover of dominant influence.

3. While a testability shock can lead to less reliance on prestige markers and thus constitute
a move to a more meritocratic system, testability shocks are not a choice variable of policy
makers in government, academia, or scientific publishing; rather, they are endogenous to the
research production itself. A paradigm shift that leads to more testability (as with the credibility
revolution) may be attractive to the less prestigious, but it must first play by the rules of the
incumbent paradigm to be successful. Research evaluators should be mindful of the margins they

can control.

4. Testability is only one dimension of the differences in subject matter across scientific fields, and
I have avoided discussions of researcher-side field self-selection based on testability or prestige
hierarchies. I would argue that any policy that changes testability criteria or prestige marker
deference must account for the framework I present, but it is certainly not the only spring from

which streams of incentives flow.

5. The prestige-testability tradeoff warrants further consideration as a factor in other aspects of the
structure of science. For example, it has been noted that the age of researchers at which major
scientific discovers occur varies considerably over time, and varies somewhat across fields (Jones
2009; 2010; Jones and Weinberg 2011). Age of discovery may be a function of how various fields

(and time periods) test output which in turn shapes the underlying prestige hierarchy.'®

As T present here, the prestige-testability tradeoff may prove most fruitful in uncovering the on-the-
ground dynamics of paradigm shifts across fields, space, and time. Indeed, given the simplicity of the

hypothesis, it likely a feature of a wide variety of social learning environments besides science: will a

10In these discussions, however, little attention is paid to the sheer increase in number of researchers since 1950 (see
Figure B6).
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flood of artificially generated content suppress the direct “testability” in media and spur consumers
to require signals of prestige from the presenter? Or conversely, if prestigious individuals abuse their
platforms, can this induce a shift toward testability? If the prestige-testability tradeoff is a real

structural phenomenon, it may have implications across education, politics, and culture.
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Appendix A: Proof of Inequality 5

Let reputations & € [0, 1] have baseline CDF G. Let the thresholds satisfy % < af < 1. Define the
active-seller CDF as the conditional CDF of reputations given survival above the threshold: for market

i,

Thus, for = € [af, 1),

0, T <o,
G(z) — G(ar

Gi(z) = (xz G(a(’f l), af <z <1, (A1)
1, rz>1

Claim. For all z, Gg(z) < Ga(z); the inequality is strict for x € [af;, 1) whenever G(x) < 1.

Proof. (i) If z < af, then by (Al) Gp(z) =0 < Ga(x).
(if) If oy <z < 1, set a := G(z) and b; := G(¢f). By monotonicity of G and o < ajf;, we have
ba < bp. Define f(b) := 9=2 for b € [0,1). Because a < 1, f'(b) = (1“_%1)2 < 0, so f is strictly
decreasing. Thus

Gp(z) = f(bp) < f(ba) = Ga(z),

with strict inequality if either by < bg or a < 1.
(iii) If > 1, then Gp(x) = Ga(x) = 1.
Combining (i)-(iii) yields Gp(z) < Ga(z) for all x, with strict inequality on [a};, 1) when G(z) < 1.

Hence the active reputation distribution in B first-order stochastically dominates that in A. O

L1If there is mass at o and “active” means & > af, replace G(a) by the left limit G(o ™).
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Appendix B: Regression analysis supplements

Table B1: Summary statistics for regression analysis

Panel A: Sample structure

Field—year Mean Median Min Max P90 P99 N
Years — 1900 2015 — — 116
# Papers 29921 5235 96 856259 79196 337625 2204
# Authors 61213 6341 101 2173377 149684 831811 2204
# Titles used for Testability 2992 526 5 85658 7935 33700 2204
Subfield—year Mean Median Min Max p90 P99 N
Years — 1900 2015 — — 116
# Papers 2289. 286 1 212064 5743. 29962. 26415
# Authors 5944. 364 1 745382 12402. 101774. 26415
# Titles used for Testability 146. 15 0 21180 351 2126. 54099
Panel B: Descriptive statistics
Field—year Subfield-year

Variable Mean SD pl0 p90 Mean SD pl0 P90
Testability (pctile 0-100) 50 28.71 11.3 89.98 50 23.4337 34.9335 90.0686
Paper-citations HHI 0.028 0.064 0.00024 0.0726 0.1419 0.2198 0.001433 0.426

— log -5.28 2.155  -8.339 -2.622 -3.7768 3.8153 -6.5477 -0.8532
Author-citations HHI 0.023 0.054 0.00011 0.0573 0.1199 0.2037 0.00058 0.3543

— log -5.661 2.351 -9.116  -2.859 -4.2026 3.918 -7.4526 -1.0376
Author h-index HHI 0.00474  0.0091 0.000027 0.0136 0.0779 0.1564 0.0002513 0.2175

— log -7.117 2.346  -10.51  -4.299 -4.6552 3.0968  -8.289 -1.5255
Team size (median) 1.305 0.644 1 2 1.3797  0.7833 1 2
# Active authors 61213 175091 679 149684 5943.88 22940.45 21 12402.4
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Figure B1: Sample year scatter plot of author citation HHI and testability.
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Figure B2: Sample decade scatter plot of author citation HHI and testability. Note that all regressions

reported in Table 2 include year fixed effects.
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Author—-H-index Concentration and Testability by Field
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Figure B3: Author-H-index and Testability. Note: The prestige-testability tradeoff hypothesis says that there should be lower testability (dark) where
there is higher concentration of prestige markers (top), but note that all regressions reported in Table 2 include year fixed effects. Testability is measured as

) 2
the incidence of the string “ test” (space included) in titles among the fields, and factored as percentile. HHI is calculated as hhiy; = Z?:l (%m) ,

where h — index is the lifetime h-index of an individual author i who is active in field f in year t; n is total active authors in that field-year. Number of
field-years = 2204.The order of fields in the key is ranking in last observed year (2015).
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Paper-citation Concentration and Testability by Field
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Figure B4: Paper-citation Concentration and Testability. Note: The prestige-testability tradeoff hypothesis says that there should be lower testability (dark)
where there is higher concentration of prestige markers (top), but note that all regressions reported in Table 2 include year fixed effects. Testability is measured

as the incidence of the string “ test” (space included) in titles among the fields, and factored as percentile. HHI is calculated as hhif: = Z?:I mﬁ%) ,

where f is a field, t is a year, ¢ is an individual contribution, and n is number of contributions in the field. Number of field-years = 2204.The order of fields
in the key is ranking in last observed year (2015).



Contribution Count by Field
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Figure B5: Contribution Count by Field (log scale). Each contribution is counted as a unique Paper
ID in SciSciNet. Here I include contributions identified as journal articles, books, book chapters, and
conference papers, and I exclude those identified as datasets, thesis papers, repository papers (such
as in ArXive or SSRN) or are left unidentified. This yields 91,479,382 out of the approximately 134
million total contributions in SciSciNet

Distinct Active Author Count by Field
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Figure B6: Author Count by Field (log scale). FEach author is counted as a unique Author ID in
SciSciNet with at least one contribution in a field-year. See Lin et al. 2023, 5, for the method used for
author disambiguation.
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Figure B8: Mean Team Size by Field. Fach team size is calculated as the number of distinct authors
on a contribution. These are generated from a 10% sample of contributions in each field-year.
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Figure B9: Median Team Size by Field. Each team size is calculated as the number of distinct authors
on a contribution. These are generated from a 10% sample of contributions in each field-year.
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Appendix C: Event study supplements

C.1 Interpreting the Sun—Abraham Event-Study Estimates with Potential

Outcomes.

An author i joins cohort g when she cites a seed-paper in her adoption year C; € G U {c0}; never-
adopters have adoption year C; = co. Event time is defined as k =t — C;, where t is calender time.
The fact that authors’ adoption takes place over calender time give the impetus for the staggered event
study design. Potential outcomes are Yj;(c), the outcome for author ¢ in year ¢ if ¢ were to adopt in
year ¢ (with ¢ = co the never-adopt state).

For cohort g and event time k, the causal effect of interest is
(k) = E[Yi g1x(9) — Yi gx(o0) | Ci =g].

That is, given that some author is in cohort g, the difference between their realized outcome and
their unrealized potential outcome of being untreated is the causal effect to which I approximate with
the following estimation and assumptions.

I estimate an interaction-weighted event study as presented in Sun and Abraham (2021) with
reference period kK = —1 omitted and fixed effects p that are either calendar-year FE (Main) or
subfield-by-year FE (Strict). Let Bk denote the estimated coefficient at event time k. Under the

assumptions below,

Ek ~ Z Wi, 4 (k), Z wgr =1,

9€Gy 9€Gk
that is, a cohort-weighted average of cohort-specific causal effects for the cohorts Gy that contribute
observations at event time k. The weights wgy reflect the Sun-Abraham interaction-weighting across

cohorts.

Counterfactual and Comparison Set. Conceptually, 7,(k) compares the path under adoption in
the observed cohort g to the never-adopt path Y;;(oco0). Empirically, at each calendar year ¢, the control
group used by the estimator consists of not-yet-treated (and any never-treated) authors, {i : C; > t};
already-treated authors (C; < t) do not serve as controls.

Using authors who are not-yet-treated as a comparison group comes with advantages and disad-
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vantages. Firstly, if there are hidden variables that cause assortment into ever-treatment status, this
technique can count that out as a determinant of any estimated causal effects; I take this fact as a
strong argument for using the present design, given that authors surely non-randomly choose fields,
topics, methods, and ultimately treatment status. However, by construction the comparison group is
always part of a group that adopts later in calender time; this would introduce bias if calender time of
treatment correlates with effect sizes. For this reason, I include a calender year fixed effect in all my

estimates.

Heterogeneity by Pre-Treatment Outcome. To study whether effects differ across researchers
with different pre-treatment outcome levels, I partition authors into G groups using only information
from the period before adoption. For each outcome Y (e.g., ¢5, ¢10, hit10, or top5), I construct a
baseline statistic

SZ(Y) = mediant<(;i Yita

the author-specific median outcome over pre-adoption years.!? I then rank authors by S;(Y) and
assign a group label Q; € {1,...,G} (e.g., G = 2 for a median split, G = 3 for terciles, or as I present
G =5 for quantiles). Importantly, the grouping uses only pre-treatment data, so it is unaffected by
post-adoption dynamics.

Given these groups, I estimate an interacted Sun—Abraham specification that allows the dynamic

treatment path to differ across Q;:

G
Yi= > Zﬂ,ﬁ‘Z)(Zl{@=g}1{t—g=k}>1{czi:q} +ou+ e,

k#—1qg=1 9€g

with the same fixed effects p as in the main specification (calendar-year FE for Main; subfield x year
FE for Strict) and the same weighting choice (unweighted or w;;). Let B\,(Cq) denote the coefficient for

group ¢ at event time k (normalized so 3811) = 0). Under the standard identification conditions,

o S il B Yigl9) ~ Yigir() | Ci=g, Qi=q], Dl =1,
9gEGK 9gEG

so each B,(f) can be read as the average (across contributing cohorts) causal effect at event time k

for authors who started in heterogeneity group g, relative to their never-adopter counterfactual, with

12For never-adopters (C; = 00), the baseline S;(Y") is computed over all observed years. Authors without any pre-period
observations for a given outcome are not assigned to a group for that outcome. Ties are broken deterministically.
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k = —1 as the pre-adoption reference.

Interpretation. The group-specific paths {B,(Cq)} trace out how treatment effects evolve for authors
with “lower” vs. “higher” baselines. Differences across groups reflect systematic heterogeneity present
before adoption, not changes induced by treatment. This focus on pre-treatment heterogeneity is
integral for my interpretation of a prestige-testability tradeoff. As with the main estimates, valid
interpretation requires (i) no anticipation; (ii) parallel trends in the never-adopt state conditional on
the fixed effects; and (iii) adequate support from not-yet-treated controls within the fixed-effect cells

for each group and event time.

Assumptions for Causal Interpretation.

1. No anticipation. For any cohort g,

Yie(9) = Yiu(oco) forallt<g.

2. Parallel trends in the never-adopt path (conditional on FE). For any cohorts g1, g2 and

any t < min{gi, g2},
E[Yi4a(00) = Yig(o0) | Ci = g1, FE] = E[Yiya(00) = Yi(oo) | C; = go, FE]

for all feasible A > 0 with ¢t + A < min{gy, g2}. (In the heterogeneity runs, the same condition

holds within each pre-treatment group @Q; = q.)

3. SUTVA / no interference. Let D_; denote others’ adoption histories. Then
Yit(e,D_;) = Yi(c) forallce GU{cx}, t, D_;.

(Outcomes for author ¢ are unaffected by other authors’ adoption timing.)

4. Heterogeneous treatment effects allowed; group-specific parallel trends. Cohort- and
time-specific effects 7,(k) (and, with heterogeneity, T_,gq)(k)) may vary arbitrarily. Identification

relies on the parallel-trends condition within @); = ¢; no homogeneity is assumed. Formally, for
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any g1, g2 and all t,s < min{g1, g2},

= E[Yit(00) | Ci = g2,Qi = ¢,FE] —E[Ys(c0) | C; = g2, Q; = ¢, FE] .

Discussion of assumptions and interpretation.

1. No anticipation. Authors do not adjust outcomes before their first seed-citation year because
of that future adoption. However, in reality, authors “truly adopt” before the final publication,
as it requires “time to build” a publication, often over multiple years. In practice, anticipatory
behavior that effects outcomes would show changes before the adoption date. For transparency,

I present the main results without accounting for anticipatory behavior.

2. Parallel trends (never-adopt path). Conditional on the fixed effects, cohorts would have
followed the same evolution in the counterfactual “never-adopt” state. Year FE (Main) soak up
aggregate time shocks; subfield xyear FE (Strict) absorb field-specific time shocks. Remaining
differential drift across cohorts within those cells would bias the SA contrasts; the pre-trend tests

are designed to detect this, but, as always, parallel trends cannot be tested directly.

3. SUTVA / Spillovers. One author’s adoption should not mechanically alter another author’s
outcome except through common shocks already absorbed by FE. If spillovers are plausible (e.g.
peers’ adoption affects citations), this would bias estimates. Because I cannot rule this out, we

may discount the precision of the estimates as follows.

Let Y;¢(d, s) denote author i’s potential outcome in year ¢ when her own treatment status is
d € {0,1} (untreated/treated by t) and her exposure to others’ adoption is s € [0, 1] (e.g.,
the share of peers/coauthors/field colleagues already treated at ¢). SUTVA corresponds to

Yii(d, s) = Yi(d,0) for all s (no exposure effect). Our target at event time k for cohort g is

T9(k) = E[Yi ¢41(1,0) — Vi 4£(0,0)|C; = g].

With spillovers, the IW estimator contrasts treated observations with not-yet-treated controls
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who may have s > 0, yielding

Br ~ T4(k) + Bge,  Bgx = B[Yyn(1,8T) = Yyuu(1,0)] — E[Yy1x(0,5) = Yy4(0,0)],

spillover on treated spillover on controls

where ST and S are the (possibly different) exposure levels faced by treated and control groups
at (g,k).

For sign intuition, adopt a simple additive exposure model
Yie(d,s) = Yiu(d,0) + 6%V
1t(75) Zt(’ )+ t S
with 9151) (spillover slope when treated) and 9§0) (when untreated). Then

By = 0%, E[ST] — 6%, E[S).
o Case 1 (positive spillover onto controls = underestimate).
Example: As colleagues begin citing the seed methods, overall attention to the topic rises,
lifting citations even for not-yet-treated authors, so the control group improves too.
Or: If Hé(ir)k > 0 and E[S] > 0 (controls benefit), while 0221@ [ST] is comparable or smaller,
then

0
By ~ — 0%, E[SC] < 0,

s0 By, is biased toward zero: it underestimates 74(k).

» Case 2 (negative spillover onto controls = overestimate).
Ezample: Adoption pulls attention away from not-yet-treated authors (e.g., referees or read-

ers penalize older approaches), depressing their outcomes and widening the treated—control

gap.
Or: If 9;02,6 < 0 and E[S®] > 0 (controls are hurt), then

By, ~ — 6% E[SC] > 0,

so By, is biased upward: it overestimates 74(k).
At this point, I cannot yet determine if these effects are substantial or which one potentially
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dominates, so estimates should be discounted accordingly. Note: Field—year fixed effects absorb
shocks common to all authors in a subfield—year, but they do not remove differential exposure

within that cell.

. Heterogeneity. When I split authors by pre-treatment heterogeneity group @Q; of a given
outcome (computed only from pre-adoption years), the SA paths are estimated separately within
each group. Interpretation of B\ng) requires the same parallel-trends logic to hold within group

q. Differences across groups then reflect genuine effect heterogeneity present already before

adoption, rather than sorting on post-treatment dynamics.

. Normalization and Fixed Effects. Coefficients are normalized so that 3_1 = 0. The Main
specification includes year FE (11;), while the Strict specification includes subfield-by-year FE

(tet), absorbing common shocks at the corresponding aggregation.

37



C.2 Event study summary statistics

Table C1: Summary statistics for event study analysis

Panel A: Sample structure

Main: Year-FE Mean  Median Min Max p90 P99 N
Years — — 1993 2015 — — 23
Authors per year 1004.870 1048.000 441 1,470 1,450 1,470 23
Treated share per year 0.359 0.298 0.005 1.000 0.773 0.975 23
Strict: Subfield x Year FE Mean  Median Min Max p90 p99 N
Years — — 1993 2015 — — 23
Authors per subfield—year 14.697 6.000 1 210 37 134 1,411
Treated share per subfield—year 0.596 0.571 0.000 1.000 1.000 1.000 1,411

Panel B: Descriptive statistics

Year-FE Subfield x Year FE
Variable Mean SD pl0 p90 Mean SD pl0 p90
Citations (z, ¢b) 0.549 0.868 -0.234 1.733 0.565 0.874 -0.225 1.759
Citations (z, ¢10) 0.474 0.836  -0.245 1.613 0.508 0.857  -0.234 1.680
Hit (10y) 0.338 0.375 0.000 1.000 0.345 0.378 0.000 1.000
Top-5 share 0.036 0.158 0.000 0.000 0.037 0.160 0.000 0.000

Table C2: Treatment cohorts by adoption year — Year FE and Subfield x Year FE

Year FE sample Subfield x Year FE sample
Adoption
Cohort

Year Treated Share Cum. Cum. Total Treated Share Cum. Cum. Total

(%) share (%) share

(%) (%)
1993 2 0.1 2 0.1 3,284 2 0.1 2 0.1 3,260
1994 5 0.2 7 0.2 3,284 4 0.1 6 0.2 3,260
1995 24 0.7 31 0.9 3,284 22 0.7 28 0.9 3,260
1996 25 0.8 56 1.7 3,284 25 0.8 53 1.6 3,260
1997 38 1.2 94 2.9 3,284 37 1.1 90 2.8 3,260
1998 45 1.4 139 4.2 3,284 44 1.3 134 4.1 3,260
1999 70 2.1 209 6.4 3,284 70 2.1 204 6.3 3,260
2000 73 2.2 282 8.6 3,284 73 2.2 277 8.5 3,260
2001 75 2.3 357 10.9 3,284 73 2.2 350 10.7 3,260
2002 76 2.3 433 13.2 3,284 74 2.3 424 13.0 3,260
2003 108 3.3 541 16.5 3,284 105 3.2 529 16.2 3,260
2004 119 3.6 660 20.1 3,284 119 3.7 648 19.9 3,260
2005 91 2.8 751 22.9 3,284 88 2.7 736 22.6 3,260
2006 156 4.8 907 27.6 3,284 156 4.8 892 27.4 3,260
2007 156 4.8 1,063 32.4 3,284 156 4.8 1,048 32.1 3,260
2008 187 5.7 1,250 38.1 3,284 187 5.7 1,235 37.9 3,260
2009 215 6.5 1,465 44.6 3,284 211 6.5 1,446 44.4 3,260
2010 215 6.5 1,680 51.2 3,284 215 6.6 1,661 51.0 3,260
2011 316 9.6 1,996 60.8 3,284 316 9.7 1,977 60.6 3,260
2012 273 8.3 2,269 69.1 3,284 272 8.3 2,249 69.0 3,260
2013 320 9.7 2,589 78.8 3,284 317 9.7 2,566 78.7 3,260
2014 332 10.1 2,921 88.9 3,284 331 10.2 2,897 88.9 3,260
2015 363 11.1 3,284 100.0 3,284 363 11.1 3,260 100.0 3,260

38



Newly adopting authors per year
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Figure C1: Newly adopting authors each year, where adoption is citing a seed paper. Each adoption year
comprises a distinct cohort used in the staggered event study estimates. N = 3,284.
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Figure C2: Cumulative adopters over time, where adoption is citing a seed paper. N = 3,284.
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Table C3: Risk support (left) and estimation support (right) by event time & (NYT-only, main-seed authors)

Panel A: Risk (NYT, Year-FE) Panel C: Estimation (NYT, Year—FE)

k Rows MassQk Risk@(-1) Cohorts Min cohort Max cohort k Contrib. cohorts Mass@k Risk@(-1) Effective cohorts Min cohort Max cohort

-5 7,292 7,292 1,516 18 1998 2015 -5 18 7,292 1,516 17.0 1998 2015
-4 1,161 1,161 1,533 19 1997 2015 4 19 1,161 1,533 13.7 1997 2015
-3 1,274 1,274 1,552 20 1996 2015 -3 20 1,274 1,552 13.9 1996 2015
-2 1,368 1,368 1,569 21 1995 2015 -2 21 1,368 1,569 14.3 1995 2015
-1 1,572 1,572 1,572 22 1994 2015 -1 22 1,572 1,572 14.4 1994 2015
0 2,262 2,262 1,572 23 1993 2015 0 22 2,260 1,572 14.1 1994 2015

1,299 1,299 1,408 21 1994 2014 1 21 1,299 1,408 13.4 1994 2014

2 1,117 1,117 1,249 21 1993 2013 2 20 1,116 1,249 12.7 1994 2013

3 955 955 1,094 20 1993 2012 3 19 954 1,094 12.8 1994 2012

4 869 869 953 19 1993 2011 4 18 868 953 12.1 1994 2011

5 689 689 800 18 1993 2010 5 17 688 800 11.8 1994 2010

6 601 601 702 17 1993 2009 6 16 600 702 11.1 1994 2009

7 484 484 597 16 1993 2008 7 15 483 597 10.7 1994 2008

8 420 420 503 15 1993 2007 8 14 419 503 10.8 1994 2007

9 344 344 428 13 1994 2006 9 13 344 428 10.0 1994 2006

10 1,405 1,405 364 12 1994 2005 10 12 1,405 364 7.4 1994 2005

Panel B: Risk (NYT, Subfield x Year FE) Panel D: Estimation (NYT, Subfield x Year FE)

k Rows MassQFk Risk@(-1) Cohorts Min cohort Max cohort k Contrib. cohorts Mass@Qk Risk@(-1) Effective cohorts Min cohort Max cohort

-5 5,362 5,362 1,451 18 1998 2015 -5 18 5,362 1,451 15.1 1998 2015
-4 1,042 1,042 1,460 19 1997 2015 -4 19 1,042 1,460 12.3 1997 2015
-3 1,173 1,173 1,470 20 1996 2015 -3 20 1,173 1,470 12.9 1996 2015
-2 1,252 1,252 1,470 20 1996 2015 -2 20 1,252 1,470 13.1 1996 2015
-1 1,476 1,476 1,476 21 1995 2015 -1 21 1,476 1,476 13.4 1995 2015
0 2,258 2,258 1,476 23 1993 2015 0 21 2,253 1,476 14.1 1995 2015

1 1,294 1,294 1,315 21 1994 2014 1 20 1,291 1,315 13.4 1995 2014

2 1,117 1,117 1,161 21 1993 2013 2 19 1,113 1,161 12.6 1995 2013

3 954 954 1,009 20 1993 2012 3 18 950 1,009 12.7 1995 2012

4 869 869 871 19 1993 2011 4 17 866 871 12.1 1995 2011

5 688 688 718 18 1993 2010 5 16 684 718 11.7 1995 2010

6 601 601 622 17 1993 2009 6 15 596 622 11.0 1995 2009

7 484 484 519 16 1993 2008 7 14 480 519 10.6 1995 2008

8 419 419 428 15 1993 2007 8 13 415 428 10.6 1995 2007

9 344 344 358 13 1994 2006 9 12 341 358 9.8 1995 2006

10 1,404 1,404 295 12 1994 2005 10 11 1,401 295 7.4 1995 2005

Notes: Risk panels (left): Rows are author—year observations at event time k. Mass@k is the identification mass at k (controls for leads k < 0, treated for lags k > 0).
Risk@(-1) is the number of control rows at k = —1 for the same cohorts that appear at k. Cohorts counts distinct cohort years at k& (Min/Max are their bounds).
Estimation panels (right): Contrib. cohorts appear at k and have nonzero control mass at k = —1; only these cohorts are used. Effective cohorts =1/ Zg wg, with
wg proportional to the identification mass at k (controls for leads, treated for lags) and normalized to sum to one across contributing cohorts.
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